Masking release in temporally fluctuating noise depends on comodulation and overall level in Cope's gray treefrog.

J Acoust Soc Am

Department of Ecology, Evolution, and Behavior, University of Minnesota-Twin Cities, 140 Gortner Laboratories, 1479 Gortner Avenue, St. Paul, Minnesota 55108, USA.

Published: October 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many animals communicate acoustically in large social aggregations. Among the best studied are frogs, in which males form large breeding choruses where they produce loud vocalizations to attract mates. Although chorus noise poses significant challenges to communication, it also possesses features, such as comodulation in amplitude fluctuations, that listeners may be evolutionarily adapted to exploit in order to achieve release from masking. This study investigated the extent to which the benefits of comodulation masking release (CMR) depend on overall noise level in Cope's gray treefrog (). Masked signal recognition thresholds were measured in response to vocalizations in the presence of chorus-shaped noise presented at two levels. The noises were either unmodulated or modulated with an envelope that was correlated (comodulated) or uncorrelated (deviant) across the frequency spectrum. Signal-to-noise ratios (SNRs) were lower at the higher noise level, and this effect was driven by relatively lower SNRs in modulated conditions, especially the comodulated condition. These results, which confirm that frogs benefit from CMR in a level-dependent manner, are discussed in relation to previous studies of CMR in humans and animals and in light of implications of the unique amphibian inner ear for considerations of within-channel versus across-channel mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199174PMC
http://dx.doi.org/10.1121/1.5064362DOI Listing

Publication Analysis

Top Keywords

masking release
8
level cope's
8
cope's gray
8
gray treefrog
8
noise level
8
noise
5
release temporally
4
temporally fluctuating
4
fluctuating noise
4
noise depends
4

Similar Publications

Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.

View Article and Find Full Text PDF

and reciprocally promote their virulence factor secretion and pro-inflammatory effects.

Front Cell Infect Microbiol

September 2025

Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands.

Background: Co-infections of and can significantly increase morbidity and mortality. However, the effect of co-existence on virulence factor secretion and pro-inflammatory effects remain elusive.

Methods: We systematically investigated the virulence factors released by and under different culturing conditions using proteomics.

View Article and Find Full Text PDF

Glyphosate, a widely used organophosphorus herbicide in agriculture, poses potential threats to aquatic ecosystems and human health due to its long-term environmental persistence. This study presents a spectroscopic detection system based on a competitive reaction utilizing the Ponceau 4R (P4R)-Cu complex. Leveraging glyphosate's high affinity for chelating copper ions, the method enables indirect, rapid, and visual quantitative analysis of glyphosate.

View Article and Find Full Text PDF

Dexamethasone (Dexa) is widely used for the prophylaxis of chemotherapy-induced nausea and vomiting. In pediatric patients, individual dosing often requires the manipulation of commercial tablets, leading to dose inaccuracies, higher treatment complexity and poor acceptance due to Dexa's intensely bitter taste. This study aimed to develop 3D-printed chewable Dexa tablets with effective taste masking for pediatric oncology.

View Article and Find Full Text PDF

There is growing evidence regarding non-pharmacological therapies such as music as a supportive approach for the treatment of various clinical conditions in humans. Physiological and neurobiological research suggests that music exposure is related to endorphin, endocannabinoid and dopamine release, favourable effects on autonomic nervous system functioning and is associated with decreased pain perception and reduced stress response. Further evidence in humans demonstrates a beneficial role of music application during the perioperative period by improving various outcome measures, such as the perioperative stress and anxiety levels, the sedation or general anaesthetic requirements, the pain levels, the analgesic requirements and other parameters related to patient prognosis, without reported side effects.

View Article and Find Full Text PDF