98%
921
2 minutes
20
Drinking water supplies are increasingly affected by overlapping anthropogenic global change processes. As a key currency of ecosystem function in aquatic ecosystems, dissolved organic carbon (DOC) concentration and composition is sensitive to many global change processes. However, DOC must also be removed to avoid the production of harmful disinfection byproducts as water is processed. Thus, understanding the effects of global change processes on the seasonal and long-term dynamics of DOC composition and concentration is critical for ensuring the sustainability of drinking water supplies. To understand these dynamics, we analyzed a novel 11-year time series of stream water DOC concentration and composition using Weighted Regressions on Time Discharge and Season (WRTDS) to understand the influences of co-occurring changes in climate and atmospheric deposition. We also discuss the implications for water supply provision and management. We found that, during our study period, overlapping global change processes in the watershed had the net effect of increasing the DOC aromaticity, as measured by SUVA, at moderate to high discharge levels during the late spring and early summer and the autumn and early winter. However, changes in DOC concentration were more dynamic and we observed both increasing and decreasing trends depending on season and hydrologic state. During summer, at low to moderate flow levels we observed a significant (p < 0.05) increase in DOC concentration. During autumn, at moderate to high flow levels we observed a significant (p < 0.05) decrease in DOC concentration and an increase in SUVA. For drinking water providers, our results suggest that close monitoring of source waters must be coupled with the development of plans accounting for season- and hydrology-specific long-term changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2018.10.065 | DOI Listing |
Environ Sci Technol
September 2025
School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia.
As the global urban heat island (UHI) effect intensifies, understanding how UHI intensity responds to its influencing factors changes is critical for designing effective mitigation strategies. We focused on global megacities, shifted the UHI intensity assessment from physical indicators to human-related parameters, and then evaluated how human-centered UHI intensity responded to influencing factor change. We verified a significant discrepancy between traditional UHI intensity and human-centered UHI intensity worldwide, an average absolute difference of 1.
View Article and Find Full Text PDFAnnu Rev Entomol
September 2025
5Department of Entomology, University of Georgia, Athens, Georgia, USA; email:
Wetlands and their aquatic arthropods are threatened by climate change (temperature, precipitation). In this review, we first synthesize the literature on environmental controls on wetland arthropods (hydroperiod, temperature, dissolved oxygen) and then assess how these controls operate across freshwater wetlands from different global biomes (tropical/subtropical, temperate, high latitude/altitude, and dry climates) and how changes in climates alter arthropod fauna with consequent modifications to wetland ecosystem functions (decomposition, food web dynamics). We also describe ways to develop bioassessment of climate change impacts on wetlands.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
University College London, London, United Kingdom.
Background: Online postal self-sampling (OPSS) allows service users to screen for sexually transmitted infections (STIs) by ordering a self-sampling kit online, taking their own samples, returning them to a laboratory for testing, and receiving their results remotely. OPSS availability and use has increased in both the United Kingdom and globally the past decade but has been adopted in different regions of England at different times, with different models of delivery. It is not known why certain models were decided on or how implementation strategies have influenced outcomes, including the sustainability of OPSS in sexual health service delivery.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Biotechnology, Graduate School of Engineering, The University of Osaka, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
During brewing processes, proteins such as lipid transfer protein 1 (LTP1) are exposed to high temperatures, which later affects the beer foam properties. To develop high-quality beer, it is therefore essential to understand the protein chemical modifications and structural alternations induced by the high temperatures and their impact on beer foam. This study characterizes heat-induced chemical modifications and changes in the molecular size distribution and structure of LTP1 and its lipid-bound isoform, LTP1b, using size-exclusion chromatography and reverse-phase chromatography/mass spectrometry.
View Article and Find Full Text PDFPlant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDF