98%
921
2 minutes
20
Many pro-inflammatory pathways leading to arthritis have global effects on the immune system rather than only acting locally in joints. The reason behind the regional and patchy distribution of arthritis represents a longstanding paradox. Here we show that biomechanical loading acts as a decisive factor in the transition from systemic autoimmunity to joint inflammation. Distribution of inflammation and erosive disease is confined to mechano-sensitive regions with a unique microanatomy. Curiously, this pathway relies on stromal cells but not adaptive immunity. Mechano-stimulation of mesenchymal cells induces CXCL1 and CCL2 for the recruitment of classical monocytes, which can differentiate into bone-resorbing osteoclasts. Genetic ablation of CCL2 or pharmacologic targeting of its receptor CCR2 abates mechanically-induced exacerbation of arthritis, indicating that stress-induced chemokine release by mesenchymal cells and chemo-attraction of monocytes determines preferential homing of arthritis to certain hot spots. Thus, mechanical strain controls the site-specific localisation of inflammation and tissue damage in arthritis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6218475 | PMC |
http://dx.doi.org/10.1038/s41467-018-06933-4 | DOI Listing |
Sci Adv
September 2025
Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P.R. China.
Bioinspired network designs are widely exploited in biointegrated electronics and tissue engineering because of their high stretchability, imperfection insensitivity, high permeability, and biomimetic J-shaped stress-strain responses. However, the fabrication of three-dimensionally (3D) architected electronic devices with ordered constructions of network microstructures remains challenging. Here, we introduce the tensile buckling of stacked multilayer precursors as a unique route to 3D network materials with regularly distributed 3D microstructures.
View Article and Find Full Text PDFLangmuir
September 2025
Department of Light Chemical Engineering, School of Textiles Science and Engineering; Key Laboratory of Special Protective, Ministry of Education; Jiangnan University, Wuxi 214122, P. R. China.
Polymerizable deep eutectic solvents (PDES) have recently emerged as a class of solvent-free ionically conductive elastomers and are considered among the most feasible candidates for next-generation ionotronic devices. However, the fundamental challenge persists in synergistically combining high mechanical strength, robust adhesion, reliable self-healing capacity, and effective antimicrobial performance within a unified material system capable of fulfilling the rigorous operational demands of next-generation ionotronic devices across multifunctional applications. Inspired by the hierarchical structure of spider silk, HCAG eutectogels composed of acrylic acid (AA), 2-hydroxyethyl acrylate (HEA), and choline chloride (ChCl) were successfully synthesized via a one-step photopolymerization method.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
Modern electronic systems are evolving toward miniaturized designs, flexible architectures, and high-power-density requirements. However, progress in developing electrical insulation materials that integrate mechanical robustness, flexibility, and thermal stability remains a critical challenge. This study introduces a novel nacre-inspired aramid-vermiculite nanopaper featuring a 3D interconnected layered network, designed for use in flexible electrical insulating applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Soft conductive composites are significant components of soft and wearable electronics. Existing soft conductive composites encounter difficulties in attaining 10% of copper's electrical conductivity while maintaining high stretchability. In this work, a novel "soft conductive junction" concept is introduced to overcome the conductivity-stretchability trade-off.
View Article and Find Full Text PDF