Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Automated cardiac image interpretation has the potential to transform clinical practice in multiple ways, including enabling serial assessment of cardiac function by nonexperts in primary care and rural settings. We hypothesized that advances in computer vision could enable building a fully automated, scalable analysis pipeline for echocardiogram interpretation, including (1) view identification, (2) image segmentation, (3) quantification of structure and function, and (4) disease detection.

Methods: Using 14 035 echocardiograms spanning a 10-year period, we trained and evaluated convolutional neural network models for multiple tasks, including automated identification of 23 viewpoints and segmentation of cardiac chambers across 5 common views. The segmentation output was used to quantify chamber volumes and left ventricular mass, determine ejection fraction, and facilitate automated determination of longitudinal strain through speckle tracking. Results were evaluated through comparison to manual segmentation and measurements from 8666 echocardiograms obtained during the routine clinical workflow. Finally, we developed models to detect 3 diseases: hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary arterial hypertension.

Results: Convolutional neural networks accurately identified views (eg, 96% for parasternal long axis), including flagging partially obscured cardiac chambers, and enabled the segmentation of individual cardiac chambers. The resulting cardiac structure measurements agreed with study report values (eg, median absolute deviations of 15% to 17% of observed values for left ventricular mass, left ventricular diastolic volume, and left atrial volume). In terms of function, we computed automated ejection fraction and longitudinal strain measurements (within 2 cohorts), which agreed with commercial software-derived values (for ejection fraction, median absolute deviation=9.7% of observed, N=6407 studies; for strain, median absolute deviation=7.5%, n=419, and 9.0%, n=110) and demonstrated applicability to serial monitoring of patients with breast cancer for trastuzumab cardiotoxicity. Overall, we found automated measurements to be comparable or superior to manual measurements across 11 internal consistency metrics (eg, the correlation of left atrial and ventricular volumes). Finally, we trained convolutional neural networks to detect hypertrophic cardiomyopathy, cardiac amyloidosis, and pulmonary arterial hypertension with C statistics of 0.93, 0.87, and 0.85, respectively.

Conclusions: Our pipeline lays the groundwork for using automated interpretation to support serial patient tracking and scalable analysis of millions of echocardiograms archived within healthcare systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6200386PMC
http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034338DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
cardiac chambers
12
left ventricular
12
ejection fraction
12
median absolute
12
fully automated
8
echocardiogram interpretation
8
clinical practice
8
cardiac
8
scalable analysis
8

Similar Publications

Accelerated Patient-specific Non-Cartesian MRI Reconstruction using Implicit Neural Representations.

Int J Radiat Oncol Biol Phys

September 2025

Radiation Oncology, University of California, San Francisco, 505 Parnassus Ave, San Francisco, CA 94143. Electronic address:

Purpose: Accelerating MR acquisition is essential for image guided therapeutic applications. Compressed sensing (CS) has been developed to minimize image artifacts in accelerated scans, but the required iterative reconstruction is computationally complex and difficult to generalize. Convolutional neural networks (CNNs)/Transformers-based deep learning (DL) methods emerged as a faster alternative but face challenges in modeling continuous k-space, a problem amplified with non-Cartesian sampling commonly used in accelerated acquisition.

View Article and Find Full Text PDF

Shifted windowing vision transformer-based skin cancer classification via transfer learning.

Clinics (Sao Paulo)

September 2025

Shandong Qinlu Energy Technology Co., Ltd, Jinan, 250357, China.

Objective: Skin cancer is widely recognized as one of the most perilous diseases on a global scale. Early identification of skin lesions can significantly enhance the treatment effects by aiding in clinical decision-making, hence mitigating the risk of disease progression and metastasis. Unfortunately, the skin images used for training are usually limited and imbalanced.

View Article and Find Full Text PDF

Background And Objective: Preterm infants are characterized by immature cardiorespiratory systems and require continuous monitoring of physiological signals in neonatal intensive care units (NICUs) to assess their clinical condition and return alarms in critical situations. However, many alarms are false or clinically irrelevant, leading to alarm fatigue for nurses and clinicians. A particularly high false alarm rate is reported for central apneas (CAs), with precision as low as 0.

View Article and Find Full Text PDF

A deep learning-based approach for measuring patellar cartilage deformations from knee MR images.

J Biomech

August 2025

Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA; Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA; Department of Mechanical Engineering & Materials Science, Pratt School of Engineering, Duke University, Durham,

While knee osteoarthritis (OA) is a leading cause of disability in the United States, OA within the patellofemoral joint is understudied compared to the tibiofemoral joint. Mechanical alterations to cartilage may be among the first changes indicative of early OA. MR-based protocols have probed patellar cartilage mechanical function by measuring deformations in response to exercise.

View Article and Find Full Text PDF

-Aspect-Based Sentiment Analysis (ABSA) is considered a unique variant, which intends to identify the opinions regarding delicate topics. However, it is a neglected topic of study, ABSA attempts to find out the sentiment polarity on particular characteristics within statements, enabling more precise mining of consumers' emotional polarities regarding various aspects. The conversion of the conventional rating-aided recommendation approach into an effective aspect-aided procedure is made easier by this evaluation.

View Article and Find Full Text PDF