This study introduces Glucose Level Understanding and Control Optimized for Safety and Efficacy (GLUCOSE), a distributional offline reinforcement learning algorithm for optimizing insulin dosing after cardiac surgery. Trained on 5228 patients, tested on 920, and externally validated on 649, GLUCOSE achieved a mean estimated reward of 0.0 [-0.
View Article and Find Full Text PDFBackground: Major Adverse Kidney Events within 30 days (MAKE30) is an important patient-centered outcome for assessing the impact of acute kidney injury (AKI). Existing prediction models for MAKE30 are static and overlook dynamic changes in clinical status. We introduce ORAKLE, a novel deep-learning model that utilizes evolving time-series data to predict MAKE30, enabling personalized, patient-centered approaches to AKI management and outcome improvement.
View Article and Find Full Text PDFIn-hand object reorientation is necessary for performing many dexterous manipulation tasks, such as tool use in less structured environments, which remain beyond the reach of current robots. Prior works built reorientation systems assuming one or many of the following conditions: reorienting only specific objects with simple shapes, limited range of reorientation, slow or quasi-static manipulation, simulation-only results, the need for specialized and costly sensor suites, and other constraints that make the system infeasible for real-world deployment. We present a general object reorientation controller that does not make these assumptions.
View Article and Find Full Text PDFBackground: Lying on the floor for a long period of time has been described as a critical determinant of prognosis following a fall. In addition to fall-related injuries due to the trauma itself, prolonged immobilization on the floor results in a wide range of comorbidities and may double the risk of death in elderly. Thus, reducing the length of Time On the Ground (TOG) in fallers seems crucial in vulnerable individuals with cognitive disorders who cannot get up independently.
View Article and Find Full Text PDFAn artificial intelligence-enabled video fall detection system using visual science reduced emergency department visits by 80% in 6 communities over 3 months.
View Article and Find Full Text PDFBackground: Automated cardiac image interpretation has the potential to transform clinical practice in multiple ways, including enabling serial assessment of cardiac function by nonexperts in primary care and rural settings. We hypothesized that advances in computer vision could enable building a fully automated, scalable analysis pipeline for echocardiogram interpretation, including (1) view identification, (2) image segmentation, (3) quantification of structure and function, and (4) disease detection.
Methods: Using 14 035 echocardiograms spanning a 10-year period, we trained and evaluated convolutional neural network models for multiple tasks, including automated identification of 23 viewpoints and segmentation of cardiac chambers across 5 common views.
J Med Internet Res
October 2017
Background: Falls of individuals with dementia are frequent, dangerous, and costly. Early detection and access to the history of a fall is crucial for efficient care and secondary prevention in cognitively impaired individuals. However, most falls remain unwitnessed events.
View Article and Find Full Text PDF