98%
921
2 minutes
20
We report an in silico method to predict monomers suitable for use in polymerization-induced self-assembly (PISA). By calculating the dependence of LogP /surface area (SA) on the length of the growing polymer chain, the change in hydrophobicity during polymerization was determined. This allowed for evaluation of the capability of a monomer to polymerize to form self-assembled structures during chain extension. Using this method, we identified five new monomers for use in aqueous PISA via reversible addition-fragmentation chain transfer (RAFT) polymerization, and confirmed that these all successfully underwent PISA to produce nanostructures of various morphologies. The results obtained using this method correlated well with and predicted the differences in morphology obtained from the PISA of block copolymers of similar molecular weight but different chemical structures. Thus, we propose this method can be utilized for the discovery of new monomers for PISA and also the prediction of their self-assembly behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201809614 | DOI Listing |
Angew Chem Int Ed Engl
September 2025
Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA.
Photodegradable nanoparticles with sphere, worm, and vesicle morphologies were synthesized following polymerization induced self-assembly (PISA), incorporating a photoresponsive phenyl vinyl ketone (PVK) block and a nonphoto responsive 2-hydroxypropyl methacrylamide (HPMA) block. The photodegradation of nanoparticles under UV revealed that the initial shapes of sphere and vesicle particles are retained even until 7 h and after 24 h of photo-induced degradation, respectively, despite a significant reduction in molecular weight (M). This could be due to the assembly of degraded PVK fragments in the hydrophobic region, maintaining the relative hydrophilic to hydrophobic ratio.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P.R. China.
Polythiophene-based nanoparticles (PTNPs), a prominent class of conjugated polymer nanoparticles (CPNs) with remarkable optical and electronic properties, have gained significant attention in applications such as electronics and bioimaging. However, current methods in generating PTNPs have run into obstacles including low variety of morphologies, poor reproducibility, and low preparation efficiency, restricting their further application. In this study, we report a facile and efficient fabrication strategy based on template synthesis method.
View Article and Find Full Text PDFSmall
September 2025
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South Chi
Self-assembled poly(2-dimethylaminoethyl methacrylate)-poly(2-(diisopropylamino)ethyl methacrylate) (PDMA-PDPA) diblock copolymer nanoparticles are widely employed in biological applications, driving the need for a robust and scalable production method. Although polymerization-induced self-assembly (PISA) enables efficient nanoparticle synthesis at high solids content, its research and application to PDMA-PDPA are limited, likely due to kinetic trapping. Leveraging our recently developed generic time-resolved small-angle X-ray scattering (TR-SAXS) approach for PISA in non-polar media, a reversible addition-fragmentation chain transfer-mediated PDMA-PDPA PISA process in polar solvent that produces spherical micelles is examined.
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China. Electronic address:
This study demonstrated the fabrication of hyaluronic acid-based Pickering emulsion-filled gels with cascaded stimuli-responsiveness through interfacial engineering. Core-shell polymer particles featuring amino group-functionalized surfaces were first synthesized via RAFT-mediated polymerization-induced self-assembly (PISA), followed by post-polymerization hydrolysis under acidic conditions. The resulting particles were employed to stabilize corn oil-in-water Pickering emulsions, which were subsequently incorporated into an aqueous solution of aldehyde-functionalized hyaluronic acid (AHA) to form Pickering emulsion-filled gels.
View Article and Find Full Text PDFACS Macro Lett
August 2025
Department of Polymeric Materials and Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China.
Hierarchical assembly of nanosized building blocks has emerged as an effective strategy for the bottom-up fabrication of functional materials with a wide range of potential applications, but large-scale production of well-defined hierarchical colloidal materials still remains challenging. In this study, cross-linked block copolymer micelles with reversible addition-fragmentation chain transfer (RAFT) groups at the interface were prepared by orthogonal RAFT-mediated polymerization-induced self-assembly (PISA) of hydroxypropyl methacrylate (HPMA) in water. These micelles were then used as building blocks for the polymerization-induced hierarchical self-assembly (PIHSA) of -isopropylacrylamide (NIPAM) in water.
View Article and Find Full Text PDF