Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This article contains data related to the research article entitled "Stiffness memory of indirectly 3D-printed elastomer nanohybrid regulates chondrogenesis and osteogenesis of human mesenchymal stem cells" [1] (Wu et al., 2018). Cells respond to the local microenvironment in a context dependent fashion and a continuous challenge is to provide a living construct that can adapt to the viscoelasticity changes of surrounding tissues. Several materials are attractive candidates to be used in tissue engineering, but conventional manufactured scaffolds are primarily static models with well-defined and stable stiffness that lack the dynamic biological nature required to undergo changes in substrate elasticity decisive in several cellular processes key during tissue development and wound healing. A family of poly (urea-urethane) (PUU) elastomeric nanohybrid scaffolds (PUU-POSS) with thermoresponsive mechanical properties that soften by reverse self-assembling at body temperature had been developed through a 3D thermal induced phase transition process (3D-TIPS) at various thermal conditions: cryo-coagulation (CC), cryo-coagulation and heating (CC + H) and room temperature coagulation and heating (RTC + H). The stiffness relaxation and stiffness softening of these scaffolds suggest regulatory effects in proliferation and differentiation of human bone-marrow derived mesenchymal stem cells (hBM-MSCs) towards the chondrogenic and osteogenic lineages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6186969PMC
http://dx.doi.org/10.1016/j.dib.2018.09.068DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
12
stiffness softening
8
proliferation differentiation
8
differentiation human
8
derived mesenchymal
8
chondrogenic osteogenic
8
osteogenic lineages
8
data stiffness
4
softening mechanism
4
mechanism proliferation
4

Similar Publications

Piezo1 promotes M1 macrophage polarization and impairs osteogenic differentiation in bone infection.

Biochim Biophys Acta Mol Basis Dis

September 2025

Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, No.466 Xingang Road, Haizhu District, Guangzhou, 510317, PR China; Southern Medical University, No. 1023-1063, Satai South Road, Baiyun District, Guangzhou, 510515, PR China. Electronic addre

Background: Bone infection induces a strong inflammatory response and leads to impaired bone regeneration, in which macrophages sense mechanistic signals and modulate immune responses in the inflammatory microenvironment through Piezo1. Nonetheless, the regulatory role of Piezo1 in macrophages during bone infection remains elusive.

Methods: Rat models of infected bone defects were established for bulk RNA sequencing and single-cell RNA sequencing.

View Article and Find Full Text PDF

Generation of a biallelic NRAP-knockout mutant from a human iPSC line.

Stem Cell Res

September 2025

Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. Electronic address:

Cardiomyopathies, a leading cause of mortality, are associated with dysfunctional intercalated discs, which connect neighbouring cardiomyocytes and ensure proper contractility. In human cardiac diseases, loss-of-function mutations of the intercalated disc-associated protein Nebulin-Related Anchoring Protein (NRAP) have been reported. NRAP plays a crucial role in myofibril assembly and mechanotransduction, however, its regulatory functions remain unclear.

View Article and Find Full Text PDF

Therapeutic potentials of mesenchymal stem cells and their extracellular vesicles on liver diseases by modulating mitochondrial function of macrophages.

Int Immunopharmacol

September 2025

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China-Singapore Belt and Road Joint Laboratory on Infection Research and Drug Development, National Medical Center for Infectious Diseases, Collaborative Innovation Cen

Macrophages play crucial roles in the progression of liver diseases. Increasing studies have shown that mesenchymal stem cells (MSCs) and their extracellular vesicles (MSC-EVs) could reshape the liver immune microenvironment by regulating the function and phenotype of macrophages, thereby exerting a therapeutic effect on liver diseases. Mitochondria, apart from being the central hub of energy metabolism, also finely regulate macrophage-mediated innate immune responses by modulating reactive oxygen species levels, cell polarization, and cell death.

View Article and Find Full Text PDF

Hypoxia plays a critical role in regulating the progression of non-small cell lung cancer (NSCLC) by modulating the tumor immune microenvironment (TIME). Tumor-associated macrophages (TAMs), important components of TIME, can be regulated by hypoxic conditions. Unfortunately, the molecular mechanisms by which hypoxia regulates TAMs in TIME to affect NSCLC progression has not been fully delineated.

View Article and Find Full Text PDF