98%
921
2 minutes
20
The residues of organophosphorus pesticides (OPPs) have been widely detected in rivers, the gulf, and even groundwater and drinking water, which may pose a serious threat to aquatic ecosystems and human health. Compared to other treatments, constructed wetlands (CWs) have been demonstrated to be a cost-effective alternative risk mitigation strategy for non-point-source pesticide pollution. This review summarizes 32 studies related to the remediation of OPPs in 117 CWs during 2001-2017 worldwide. The performances, mechanisms and influencing factors in the studies are comprehensively and critically reviewed in this paper. Overall, the OPPs were efficiently removed with an efficiency up to 87.22 ± 16.61%. The removal efficiency, differences and related reasons among different types of CWs in developed and developing countries and the different types of OPPs in CWs are well-evaluated in detail. In addition, the main processes for OPPs removal in CWs involve phytoremediation (plant uptake, phytoaccumulation, phytovolatilization and phytodegradation), substrate adsorption or sedimentation, and biodegradation. Based on the quantitative analysis by mass balance, for water-soluble pesticides, the dominant removal process was via microbiological degradation. This result was in contrast to findings obtained with hydrophobic OPPs, for which the dominant processes were biodegradation and sorption by substrate. Therefore, the behavior of microbial transformation prevails. Additionally, the presence of plants can facilitate the elimination of OPPs in CWs, promoting the process by an average percentage of approximately 6.19 ± 9.46%. Statistical analysis shows that loading of inlet OPPs is the largest limiting factor and that the HRT and T are the most significant parameters that influence the efficiency of trapping OPPs in CWs. Simultaneously, we can also obtain suitable parameters for the design and operation of CWs. This review promotes further research on plant-microbe joint combined remediation and examines the different behaviors of water-soluble and hydrophobic OPPs in CWs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2018.10.087 | DOI Listing |
J Environ Manage
September 2024
Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. Electronic address:
Pesticides pose a significant threat to aquatic ecosystems due to their persistent nature and adverse effects on biota. The increased detection of pesticides in various water bodies has prompted research into their toxicological impacts and potential remediation strategies. However, addressing this issue requires the establishment of robust regulatory frameworks to determine safe thresholds for pesticide concentrations in water and the development of effective treatment methods.
View Article and Find Full Text PDFSci Total Environ
February 2019
State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria an Risk Assessment, Research Centre of Lake Environment, C
The residues of organophosphorus pesticides (OPPs) have been widely detected in rivers, the gulf, and even groundwater and drinking water, which may pose a serious threat to aquatic ecosystems and human health. Compared to other treatments, constructed wetlands (CWs) have been demonstrated to be a cost-effective alternative risk mitigation strategy for non-point-source pesticide pollution. This review summarizes 32 studies related to the remediation of OPPs in 117 CWs during 2001-2017 worldwide.
View Article and Find Full Text PDF