98%
921
2 minutes
20
An ionic liquid-based surfactant with ester functionality self-aggregates in an aqueous medium and forms ionogels at 8.80% (w/v) concentration at physiological pH. The ionogel exhibited a remarkable change in its appearance with temperature from fibrillar opaque to transparent because of the dynamic changes within its supramolecular structure. This gel-to-gel phase transition occurs below the melting point of the solid ionic liquid. The ionogels were investigated using turbidity, differential scanning calorimetry, scanning electron microscopy (SEM), field emission SEM (FE-SEM), inverted microscopy, transmission electron microscopy imaging, Fourier transform infrared spectroscopy, and rheological measurements. The fibrillar opaque ionogel and transparent ionogel were studied for their ability to absorb dyes (methyl orange and crystal violet) and to encapsulate drugs (diclofenac sodium and imatinib mesylate).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6175494 | PMC |
http://dx.doi.org/10.1021/acsomega.8b01984 | DOI Listing |
ChemSusChem
September 2025
Laboratoire de Chimie, ENS de Lyon and CNRS, Lyon, 69364, France.
The challenge of CO separation and management in biogas upgrading processes is addressed, which remains a critical bottleneck when considering biomethane as a competitive and sustainable alternative to natural gas. Ionic liquids offer a promising alternative to existing sorbents due to their negligible volatility and their tunable properties. Herein, a multifunctional phosphonium triazolate ionic liquid capable of reacting reversibly with CO without loss of fluidity through both cation and anion is presented.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 585 He Shuo Road, Shanghai, 201899, China.
Fluoride ion batteries (FIBs), as a promising next-generation high-energy-density storage technology, have attracted significant attention. However, developing an ideal fluoride-ion electrolyte that suppresses the β-H abstraction (caused by strong Lewis-basicity F) and electrolyte decomposition remains challenging. To address this bottleneck, we design an electrolyte system based on commercial tetrabutylammonium fluoride (TBAF) salt and 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF) ionic liquid solvent through anion-cation coordination engineering and hard-soft-acid-base (HSAB) balance modulation, unveiling its multiscale mechanisms for mitigating interfacial parasitic reaction and enhancing metal anode stability.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2025
Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States.
Biopolymer-supported deep eutectic solvent (DES)-based gels, also known as eutectogels, have emerged as promising alternatives to hydrogels and ionic-liquid-based gels for multiple applications in stretchable electronics and sensors due to many key advantages including their high ionic conductivity, tensile toughness, easy handling, simple synthesis, low cost, biocompatibility, and ultralow volatility. Particularly, gelatin-supported 1,2-propanediol (PD)-based eutectogels containing water have shown promise due to their hydrogel-like properties. They have low modulus values and biofriendly components, making them "skin-like" materials.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 6094411, Chile. Electronic address:
Nine Brønsted Acid Ionic Liquids (BAILs) based on two cationic bases (1-methylimidazolium and pyridinium) and anions derived from sulfuric (SA) and phosphoric (PA) acids, were used as solvents and acid catalysts for the hydrolysis of commercial cellulose to obtain cellulose nanocrystals (CNCs). The BAILs' effect on the reactions was evaluated as a function of the acidity and polarity of the solvents, determined by the Hammett acidity parameter (H) (determined experimentally) and by the β parameter of the Kamlet-Taft analysis (determined computationally using COSMOS-RS). Under the same experimental conditions, the change of solvent not only affects the reaction yield of the CNCs but also the final characteristics of the nanomaterials obtained.
View Article and Find Full Text PDFJ Chem Phys
August 2025
Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
We investigate the intrinsic behavior of ionic liquids under shear flow using a coarse-grained model of [C4mim]+ [PF6]- as a prototypical example. The importance of long-ranged electrostatics is assessed as a function of shear rate by comparing Ewald and reaction field treatments. An appropriate comparison is achieved through the implementation of the proper Lees-Edwards boundary conditions within the ESPResSo++ simulation software.
View Article and Find Full Text PDF