98%
921
2 minutes
20
We investigate the intrinsic behavior of ionic liquids under shear flow using a coarse-grained model of [C4mim]+ [PF6]- as a prototypical example. The importance of long-ranged electrostatics is assessed as a function of shear rate by comparing Ewald and reaction field treatments. An appropriate comparison is achieved through the implementation of the proper Lees-Edwards boundary conditions within the ESPResSo++ simulation software. Our results demonstrate that, while structural properties are relatively insensitive to the electrostatic treatment, the more accurate treatment via the Ewald approach is essential for studies of dynamics, in particular, at lower shear rates. Furthermore, we identify a critical shear rate beyond which structural and dynamical properties begin to deviate from equilibrium behavior, while remaining largely unchanged below this threshold. Finally, we demonstrate that the dynamic heterogeneity of the liquid decreases as a function of increasing shear rate, which can be primarily explained by the faster dynamics induced by the shear flow. These results hold relevance for investigations of process-dependent properties of ionic-liquid-based materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0279946 | DOI Listing |
Arterial thrombosis is a multifaceted process characterized by platelet aggregation and fibrin deposition, leading to the occlusion of blood vessels. It plays a central role in cardiovascular conditions such as myocardial infarction and ischemic stroke. Gaining insight into the mechanisms underlying arterial thrombosis is essential for developing effective treatments aimed at preventing thrombotic events and reducing associated health burdens.
View Article and Find Full Text PDFJTCVS Open
August 2025
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
Objectives: Left ventricular vortex dynamics play a crucial role in cardiac function but are significantly altered by mitral valve diseases or surgical interventions. Such hemodynamic changes may lead to maladaptive intracardiac vortices, potentially triggering pathways associated with progressive left ventricular remodeling and thrombosis. This study assessed left ventricular hemodynamics under both physiological and pathological conditions using a biohybrid in vitro platform, aiming to analyze the impact of these conditions on cardiac function.
View Article and Find Full Text PDFBiosystems
September 2025
Department of Physics, Lancaster University, Lancaster LA1 4YB, UK. Electronic address:
Swirling motion is an essential phenomenon that significantly influences numerous biological processes, such as the mixing of molecular components within living cells, nutrient transport, the structural changes of the cytoskeletons of contractile cells and the rearrangement of multicellular systems caused by collective cell migration. The dynamical relationship between subcellular and supracellular rearrangements enhances cell migration and contributes to tissue homeostasis. However, the basic mechanisms that drive swirling motion in biological contexts remain a matter of ongoing inquiry.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
September 2025
Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan.
The effect of shape and size of embolic agents on embolization phenomena has been discussed clinically for transcatheter arterial chemoembolization (TACE). We numerically discussed the unique embolization behavior of new deformable toroidal microparticles in blood vessels by computational fluid dynamics simulations. We employed an Eulerian-Eulerian (full Eulerian) fluid-structure interaction (FSI) method to analyze the flow and deformation behaviors of a deformable torus in a cylindrical pipe.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Fakultät Physik, Technische Universität Dortmund, D-44221 Dortmund, Germany.
The dynamics of the different constituents of the ionic liquid 1-hexyl-3-methylimidazolium chloride (HmimCl) is investigated using nuclear magnetic resonance including chlorine relaxometry, line shape analysis, and proton-detected diffusometry, as well as frequency-dependent shear mechanical measurements. This combination of techniques is useful to probe the individual motions of the anions and the cations, and the sample's overall flow response. The 35Cl- dynamics appears to be close to the structural (or α-) relaxation as seen by rheology.
View Article and Find Full Text PDF