Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress. The most complex anhydrobiotic organism known is the larva of the chironomid Polypedilum vanderplanki. Its antioxidant system shows remarkable features, such as an expansion of antioxidant genes, their overexpression, as well as the absence or low expression of enzymes required for the synthesis of ascorbate and glutathione and their antioxidant function. In this chapter, we summarize existing data about the antioxidant system of this insect, which is able to cope with substantial oxidative damage, even in an intracellular environment that is severely disturbed due to water loss.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-981-13-1244-1_14DOI Listing

Publication Analysis

Top Keywords

antioxidant system
12
oxidative stress
8
antioxidant
5
system anhydrobiotic
4
anhydrobiotic midge
4
midge essential
4
essential adaptive
4
adaptive mechanism
4
mechanism desiccation
4
desiccation survival
4

Similar Publications

Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.

Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.

View Article and Find Full Text PDF

In-situ extrusion 3D printing with tea polyphenol crosslinking for Hyaluronic acid sodium salt -based composite hydrogel scaffolds.

Colloids Surf B Biointerfaces

September 2025

School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.

High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.

View Article and Find Full Text PDF

Physiology combined with metabolomics reveal selenium acting as a mitigator for Perilla frutescens (L.) Britt. growth under oxytetracycline condition: by regulating photosynthesis, redox homeostasis and secondary metabolites.

Plant Physiol Biochem

September 2025

School of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, 071002, China. Electronic address:

The accumulation of antibiotics in soil threatens agricultural ecosystems and human health. Oxytetracycline (OTC), a plant-absorbable antibiotic, generally exerts inhibitory effects on plant growth. Selenium (Se) plays a crucial role in safeguarding plants resistant to a variety of abiotic stresses.

View Article and Find Full Text PDF

Autotoxicity in Cucumis melo L. and its alleviation by exogenous silicon: Physiological and biochemical mechanisms.

Plant Physiol Biochem

September 2025

Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.

Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.

View Article and Find Full Text PDF

Effect of Metschnikowia pulcherrima and 24-epibrassinolide on grape quality preservation and Botrytis control during postharvest.

Plant Physiol Biochem

August 2025

College of Enology, Northwest A&F University, Yangling, China; Heyang Grape Experiment and Demonstration Station, Northwest A&F University, Heyang, 715300, China; Shaanxi Engineering Research Center for Viti Viniculture, 712100, Yangling, China. Electronic address:

Postharvest deterioration in table grapes, driven by fungal pathogens and oxidative damage, remains a critical concern. This study evaluated the synergistic potential of 24-epibrassinolide (EBR) and Metschnikowia pulcherrima (Y) in preserving the quality of Red Globe grapes. The combined treatment of EBR and Y (YBR) significantly enhanced phenolic biosynthesis, elevating flavonoids and anthocyanin by 27.

View Article and Find Full Text PDF