Chironomids (Diptera; Chironomidae), non-biting midges, are a highly diverse family of holometabolous insects, many of which are known for their tolerance to extreme environmental conditions, such as desiccation, pollution, and high acidity. The contribution of microbial symbionts to these adaptations was recently suggested. Therefore, we herein exami-ned the microbiome associated with the larvae of the undescribed acid-tolerant chironomid species, Polypedilum sp.
View Article and Find Full Text PDFThe sleeping chironomid (Polypedilum vanderplanki) is the only insect capable of surviving complete desiccation in an ametabolic state called anhydrobiosis. Here, we focused on the role of oxidative stress and we observed the production of reactive oxygen species (ROS) in desiccating larvae and in those exposed to salinity stress. Oxidative stress occurs to some extent in desiccating larvae, inducing carbonylation of proteins.
View Article and Find Full Text PDFUnlabelled: Pv11 was derived from embryos of the sleeping chironomid , which displays an extreme form of desiccation tolerance known as anhydrobiosis. Pre-treatment with a high concentration of trehalose allows Pv11 cells to enter anhydrobiosis. In the dry state, Pv11 cells preserve transgenic luciferase while retaining its activity.
View Article and Find Full Text PDFThe sleeping chironomid Polypedilum vanderplanki is capable of anhydrobiosis, a striking example of adaptation to extreme desiccation. Tolerance to complete desiccation in this species is associated with emergence of multiple paralogs of protective genes. One of the gene families highly expressed under anhydrobiosis and involved in this process is protein-L-isoaspartate (D-aspartate) O-methyltransferases (PIMTs).
View Article and Find Full Text PDFThe Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery.
View Article and Find Full Text PDFOne newly described species of Chironomidae, Polypedilum (Pentapedilum) cranstoni sp. nov., was discovered in ephemeral rock pools from the Maloti-Drakensberg mountains in South Africa.
View Article and Find Full Text PDFTardigrades are small micrometazoans able to resist several environmental stresses in any stage of their life cycle. An integrated analysis of tardigrade specimens collected in Tsukuba (Japan) revealed a peculiar morphology and a new sensory field in the cloaca. Molecular taxonomy and phylogenetic analysis on different genes (COI, ITS2, 18S and 28S) confirmed that this population is a new species, sp.
View Article and Find Full Text PDFAnhydrobiosis, an adaptive ability to withstand complete desiccation, in the nonbiting midge , is associated with the emergence of new multimember gene families, including a group of 27 genes of late embryogenesis abundant (LEA) proteins (). To obtain new insights into the possible functional specialization of these genes, we investigated the expression and localization of genes in a -derived cell line (Pv11), capable of anhydrobiosis. We confirmed that all but two genes identified in the genome of are expressed in Pv11 cells.
View Article and Find Full Text PDFNon-biting midges (Chironomidae) are known to inhabit a wide range of environments, and certain species can tolerate extreme conditions, where the rest of insects cannot survive. In particular, the sleeping chironomid is known for the remarkable ability of its larvae to withstand almost complete desiccation by entering a state called anhydrobiosis. Chromosome numbers in chironomids are higher than in other dipterans and this extra genomic resource might facilitate rapid adaptation to novel environments.
View Article and Find Full Text PDFGenes (Basel)
February 2022
Genomic safe harbors (GSHs) provide ideal integration sites for generating transgenic organisms and cells and can be of great benefit in advancing the basic and applied biology of a particular species. Here we report the identification of GSHs in a dry-preservable insect cell line, Pv11, which derives from the sleeping chironomid, , and similar to the larvae of its progenitor species exhibits extreme desiccation tolerance. To identify GSHs, we carried out genome analysis of transgenic cell lines established by random integration of exogenous genes and found four candidate loci.
View Article and Find Full Text PDFPv11 is an insect cell line established from the midge Polypedilum vanderplanki, whose larval form exhibits an extreme desiccation tolerance known as anhydrobiosis. Pv11 itself is also capable of anhydrobiosis, which is induced by trehalose treatment. Here we report the successful construction of a genome editing system for Pv11 cells and its application to the identification of signaling pathways involved in anhydrobiosis.
View Article and Find Full Text PDFThe Pv11, an insect cell line established from the midge , is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11.
View Article and Find Full Text PDFThe Pv11 cell line established from an African chironomid, , is the only cell line tolerant to complete desiccation. In Pv11 cells, a constitutive expression system for Pv11 cells was previously exploited and several reporter genes were successfully expressed. Here we report the identification of an effective minimal promoter for Pv11 cells and its application to the Tet-On inducible expression system.
View Article and Find Full Text PDFSome organisms have evolved a survival strategy to withstand severe dehydration in an ametabolic state, called anhydrobiosis. The only known example of anhydrobiosis among insects is observed in larvae of the chironomid Recent studies have led to a better understanding of the molecular mechanisms underlying anhydrobiosis and the action of specific protective proteins. However, gene regulation alone cannot explain the rapid biochemical reactions and independent metabolic changes that are expected to sustain anhydrobiosis.
View Article and Find Full Text PDFLarvae of the sleeping chironomid Polypedilum vanderplanki are known for their extraordinary ability to survive complete desiccation in an ametabolic state called "anhydrobiosis". The unique feature of P. vanderplanki genome is the presence of expanded gene clusters associated with anhydrobiosis.
View Article and Find Full Text PDFWater is essential for living organisms. Terrestrial organisms are incessantly exposed to the stress of losing water, desiccation stress. Avoiding the mortality caused by desiccation stress, many organisms acquired molecular mechanisms to tolerate desiccation.
View Article and Find Full Text PDFLarvae of the African midge Polypedilum vanderplanki (Diptera: Chironomidae) show a form of extreme desiccation tolerance known as anhydrobiosis. The cell line Pv11 was recently established from the species, and these cells can also survive under desiccated conditions, and proliferate normally after rehydration. Here we report the identification of a new promoter, 121, which has strong constitutive transcriptional activity in Pv11 cells and promotes effective expression of exogenous genes.
View Article and Find Full Text PDFThe larvae of the African midge, Polypedilum vanderplanki, can enter an ametabolic state called anhydrobiosis to overcome fatal desiccation stress. The Pv11 cell line, derived from P. vanderplanki embryo, shows desiccation tolerance when treated with trehalose before desiccation and resumes proliferation after rehydration.
View Article and Find Full Text PDFOne of the major damaging factors for living organisms experiencing water insufficiency is oxidative stress. Loss of water causes a dramatic increase in the production of reactive oxygen species (ROS). Thus, the ability for some organisms to survive almost complete desiccation (called anhydrobiosis) is tightly related to the ability to overcome extraordinary oxidative stress.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2018
is a striking and unique example of an insect that can survive almost complete desiccation. Its genome and a set of dehydration-rehydration transcriptomes, together with the genome of (a congeneric desiccation-sensitive midge), were recently released. Here, using published and newly generated datasets reflecting detailed transcriptome changes during anhydrobiosis, as well as a developmental series, we show that the TCTAGAA DNA motif, which closely resembles the binding motif of the heat shock transcription activator (Hsf), is significantly enriched in the promoter regions of desiccation-induced genes in , such as genes encoding late embryogenesis abundant (LEA) proteins, thioredoxins, or trehalose metabolism-related genes, but not in Unlike , has double TCTAGAA sites upstream of the Hsf gene itself, which is probably responsible for the stronger activation of Hsf in during desiccation compared with To confirm the role of Hsf in desiccation-induced gene activation, we used the Pv11 cell line, derived from embryo.
View Article and Find Full Text PDFDesiccation-tolerant cultured cells Pv11 derived from the anhydrobiotic midge embryo endure complete desiccation in an ametabolic state and resume their metabolism after rehydration. These features led us to develop a novel dry preservation technology for enzymes as it was still unclear whether Pv11 cells could preserve an exogenous enzyme in the dry state. This study shows that Pv11 cells protect an exogenous desiccation-sensitive enzyme, luciferase (Luc), preserving the enzymatic activity even after dry storage for 372 days at room temperature.
View Article and Find Full Text PDFIt is assumed that resistance to ionizing radiation, as well as cross-resistance to other abiotic stresses, is a side effect of the evolutionary-based adaptation of anhydrobiotic animals to dehydration stress. Larvae of Polypedilum vanderplanki can withstand prolonged desiccation as well as high doses of ionizing radiation exposure. For a further understanding of the mechanisms of cross-tolerance to both types of stress exposure, we profiled genome-wide mRNA expression patterns using microarray techniques on the chironomid larvae collected at different stages of desiccation and after exposure to two types of ionizing radiation-70 Gy of high-linear energy transfer (LET) ions (He) and the same dose of low-LET radiation (gamma rays).
View Article and Find Full Text PDFLarvae of the African midge Polypedilum vanderplanki show extreme desiccation tolerance, known as anhydrobiosis. Recently, the cultured cell line Pv11 was derived from this species; Pv11 cells can be preserved in the dry state for over 6 months and retain their proliferation potential. Here, we attempted to expand the use of Pv11 cells as a model to investigate the mechanisms underlying anhydrobiosis in P.
View Article and Find Full Text PDFPv11, a cell line derived from the anhydrobiotic insect, Polypedilum vanderplanki, was preserved in a dry form (only 6% residual moisture) at room temperature for up to 251 days and restarted proliferating after rehydration. A previous study already reported survival of Pv11 cells after desiccation, but without subsequent proliferation. Here, the protocol was improved to increase survival and achieve proliferation of Pv11 cells after dry storage.
View Article and Find Full Text PDFA human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals.
View Article and Find Full Text PDF