Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A human neuroblastoma cell line, NB-1, was treated with 24 h of microgravity simulation by clinostat, or irradiated with extremely small X-ray doses of 0.1 or 1.0 mGy using single and 10 times fractionation regimes with 1 and 2 h time-intervals. A quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) examination was performed for apoptosis related factors (BAX, CYTC, APAF1, VDAC1-3, CASP3, CASP8, CASP9 P53, AIF, ANT1 and 2, BCL2, MnSOD, autophagy related BECN and necrosis related CYP-40. The qRT-PCR results revealed that microgravity did not result in significant changes except for a upregulation of proapoptotic VDAC2, and downregulations of proapoptotic CASP9 and antiapoptotic MnSOD. After 0.1 mGy fractionation irradiation, there was increased expression of proapoptotic APAF1 and downregulation of proapoptotic CYTC, VDAC2, VDAC3, CASP8, AIF, ANT1, and ANT2, as well as an increase in expression of antiapoptotic BCL2. There was also a decrease in MnSOD expression with 0.1 mGy fractionation irradiation. These results suggest that microgravity and low-dose radiation may decrease apoptosis but may potentially increase oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566025PMC
http://dx.doi.org/10.3164/jcbn.15-20DOI Listing

Publication Analysis

Top Keywords

human neuroblastoma
8
neuroblastoma cell
8
cell nb-1
8
aif ant1
8
01 mgy fractionation
8
fractionation irradiation
8
mnsod
4
mnsod downregulation
4
downregulation induced
4
induced extremely
4

Similar Publications

Stable apelin-13 analogues promote cell proliferation, differentiation and protect inflammation induced cell death.

Mol Cell Neurosci

September 2025

Biomedical and Forensic Science, School of Human Sciences, University of Derby, Derby, DE22 1GB, United Kingdom; Life and Health Sciences, University of Roehampton, London, SW15 5PH, United Kingdom. Electronic address:

Emerging evidence indicates that apelin, an adipokine, plays a critical role in numerous biological functions and may hold potential for therapeutic applications; however, its efficacy is constrained by rapid plasma degradation. Thus, the search for novel apelin analogues with reduced susceptibility to plasma degradation is ongoing. We have previously shown novel modified apelin-13 analogues, providing exciting opportunities for potential therapeutic development against Alzheimer's disease.

View Article and Find Full Text PDF

Reduced mitochondrial quality and quantity in tumors is associated with dedifferentiation and increased malignancy. However, it remains unclear how to restore mitochondrial quantity and quality in tumors and whether mitochondrial restoration can drive tumor differentiation. Our study shows that restoring mitochondrial function using retinoic acid (RA) to boost mitochondrial biogenesis and a mitochondrial uncoupler to enhance respiration synergistically drives neuroblastoma differentiation and inhibits proliferation.

View Article and Find Full Text PDF

Aims: Nicotine, anatabine, and anabasine are the most prevalent alkaloids in Nicotiana species. While nicotine is the main addictive ingredient in tobacco products, it was also shown to have neuroprotective properties. Mitochondria appear to be one of the targets of nicotine in the cell.

View Article and Find Full Text PDF

NUTM2A-AS1 is an emerging long noncoding RNA (lncRNA) that has garnered significant attention due to its multifaceted roles in cancer biology. As a member of the ceRNA network, NUTM2A-AS1 modulates gene expression by sequestering microRNAs, thereby influencing key oncogenic pathways. This review aims to provide a comprehensive overview of the current understanding of NUTM2A-AS1 in the development, progression, and metastasis of various cancers, including gastric cancer, hepatocellular carcinoma, neuroblastoma, colorectal cancer, glioma, lung adenocarcinoma, prostate cancer, and renal cell carcinoma.

View Article and Find Full Text PDF

Over the past decade, increasing attention has been directed toward the development and evaluation of novel anticancer agents based on nanotechnology. Nanoparticles (NPs) have emerged both as standalone anticancer agents and as carriers for targeted drug delivery. Various types of nanoparticles are being investigated in combinatorial cancer therapies alongside radiotherapy or immunomodulatory agents, with the aim of reducing drug resistance and enhancing apoptotic responses within tumors.

View Article and Find Full Text PDF