Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This paper considers the tracking synchronization problem for a class of coupled reaction-diffusion neural networks (CRDNNs) with undirected topology. For the case where the tracking trajectory has identical individual dynamic as that of the network nodes, the edge-based and vertex-based adaptive strategies on coupling strengths as well as adaptive controllers, which demand merely the local neighbor information, are proposed to synchronize the CRDNNs to the tracking trajectory. To reduce the control costs, an adaptive pinning control technique is employed. For the case where the tracking trajectory has different individual dynamic from that of the network nodes, the vertex-based adaptive strategy is proposed to drive the synchronization error to a relatively small area, which is adjustable according to the parameters of the adaptive strategy. This kind of adaptive design can enhance the robustness of the network against the external disturbance posed on the tracking trajectory. The obtained theoretical results are verified by two representative examples.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2018.2869631DOI Listing

Publication Analysis

Top Keywords

tracking trajectory
16
tracking synchronization
8
coupled reaction-diffusion
8
reaction-diffusion neural
8
case tracking
8
individual dynamic
8
dynamic network
8
network nodes
8
vertex-based adaptive
8
adaptive strategy
8

Similar Publications

Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.

Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).

View Article and Find Full Text PDF

Flexible photonic contactless human-machine interface based on visible-blind near-infrared organic photodetectors.

Natl Sci Rev

September 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.

Contactless human-machine interfaces (C-HMIs) are revolutionizing artificial intelligence (AI)-driven domains, yet face application limitations due to narrow sensing ranges, environmental fragility, and structural rigidity. To address these obstacles, we developed a flexible photonic C-HMI (Flex-PCI) using flexible visible-blind near-infrared organic photodetectors. In addition to its unprecedented performance across key metrics, including broad detection range (0.

View Article and Find Full Text PDF

Although depression can be transmitted across generations, less is known about how this cycle can be interrupted. This study examines whether the multilevel Fast Track intervention (clinicaltrials.gov, NCT01653535) disrupts intergenerational transmission of depression.

View Article and Find Full Text PDF

As a life-limiting illness, dementia requires a holistic approach to care, where spiritual support plays a crucial role in helping individuals and their caregivers find meaning and solace. Our aim was to systematically map the research conducted on psychosocial interventions developed to provide spiritual support for people living with dementia and their caregivers from diagnosis and across the disease trajectory. A scoping review was conducted to explore the breadth of research on 'spiritual support' in dementia care, encompassing interventions, service delivery models, programs, toolkits, approaches, and activities.

View Article and Find Full Text PDF

Single camera estimation of microswimmer depth with a convolutional network.

J R Soc Interface

September 2025

Institute of Intelligent Systems and Robotics, Sorbonne Université, Paris, Île-de-France, France.

A number of techniques have been developed to measure the three-dimensional trajectories of protists, which require special experimental set-ups, such as a pair of orthogonal cameras. On the other hand, machine learning techniques have been used to estimate the vertical position of spherical particles from the defocus pattern, but they require the acquisition of a labelled dataset with finely spaced vertical positions. Here, we describe a simple way to make a dataset of images labelled with vertical position from a single 5 min movie, based on a tilted slide set-up.

View Article and Find Full Text PDF