A study on the tubular composite with tunable compression mechanical behavior inspired by wood cell.

J Mech Behav Biomed Mater

Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 130022 Changchun, Jilin, China. Electronic address:

Published: January 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biological materials have fascinating mechanical properties built up from simple basic material blocks. It is worthwhile to learn how biological materials are constructed, and to apply the knowledge in advanced manufacturing, and to realize new materials by design. In this study, we chose the tubular cell in the soft wood as a biological prototype, and tried to mimic its intelligent construction principle to regulate the compression mechanical behavior through the helical structure. First, by using the multi-material three-dimensional printing technology, we fabricated a series of tubular composites with the helix fibers of a rigid plastic embedded into an elastomeric matrix. Then, through the uniaxial compression tests, we characterized the mechanical behavior of the specimens, having different fiber angle from 0 to 50 deg at constant volume fraction. The results showed that both stiffness and fracture toughness of the printed composite could be regulated effectively by adjusting the fiber angle of the helical structure. Moreover, the helical structure with high fiber angle is able to improve the compression stability of the tubular composite with big lumen. In addition, for the biomimetic composites, the volume fraction of the reinforcements should exceed 40%. Finally, we proposed a new structural design method by combining the reinforcements of different architectures into a double-layered configuration. The intelligent strategy is proven to balance the conflict between the stiffness and toughness of the composites to some extent, and without changing in the building constituents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmbbm.2018.09.030DOI Listing

Publication Analysis

Top Keywords

mechanical behavior
12
helical structure
12
fiber angle
12
tubular composite
8
compression mechanical
8
biological materials
8
volume fraction
8
study tubular
4
composite tunable
4
compression
4

Similar Publications

Human gastroids to model regional patterning in early stomach development.

Nature

September 2025

Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China.

The human stomach features distinct, regionalized functionalities along the anterior-posterior axis. Historically, studies on stomach patterning have used animal models to identify the underlying principles. Recently, human pluripotent stem (hPS)-cell-based gastric organoids for modelling domain-specific development of the fundic and antral epithelium are emerging.

View Article and Find Full Text PDF

Antioxidants: The Chemical Complexity Behind a Simple Word.

Acc Chem Res

September 2025

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ave. Ferrocarril San Rafael Atlixco 186, Col. Leyes de Reforma 1A sección, Alcaldía Iztapalapa, 09310 Mexico City, Mexico.

ConspectusWhat does the word antioxidant mean? Antioxidants are supposed to be nontoxic, versatile molecules capable of counteracting the damaging effects of oxidative stress (OS). Thus, when evaluating a candidate molecule as an antioxidant, several aspects should be considered. Antioxidants are more than free radical scavengers.

View Article and Find Full Text PDF

Latent fingermark recovery in a simulated café setting: an exploratory study of cyanoacrylate fuming on disposable nonporous plastic and semiporous paper cups.

Sci Justice

September 2025

Department of Police Administration, Daegu University, PO Box 38453, Daegu, South Korea; Department of Policing & Security, Rabdan Academy, PO Box 114646, Abu Dhabi, United Arab Emirates. Electronic address:

Latent fingermark recovery from beverage containers is an important aspect of forensic investigations, yet the influence of substrate properties and beverage temperatures on fingermark development remains understudied. This exploratory study assessed the development and quality of latent fingermarks on disposable beverage cups made of nonporous plastic and semiporous paper using cyanoacrylate (CA) fuming, under conditions approximating a typical café environment. A total of 255 cups (107 plastic, 148 paper) were collected after participants consumed hot and iced beverages in a controlled classroom setting.

View Article and Find Full Text PDF

Introduction: While previous research has focused on drivers' visual behaviors during normal driving, few studies have explored how age-related decline affects driver reactions in collisions. This study bridges this gap by investigating aging effects on driver responses in urban car-to-cyclist intersection scenarios.

Method: Twenty-four licensed drivers, younger (mean age 35.

View Article and Find Full Text PDF

Developing Clinically Interpretable Neuroimaging Biotypes in Psychiatry.

Biol Psychiatry

September 2025

Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA; Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA. Electronic address: leawillia

Despite available treatments, major depressive disorder (MDD) remains one of the leading causes of disability across medical conditions. The current symptom-based diagnostic system groups patients with highly heterogeneous presentations, with no biomarkers to guide treatment-akin to diagnosing heart disease solely by chest pain, without imaging to reveal the underlying pathology. Lacking biological guidance, clinicians rely on trial-and-error prescribing.

View Article and Find Full Text PDF