Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mesoscopic fluorescence molecular tomography (MFMT) is a novel imaging technique capable of obtaining 3-D distribution of molecular probes inside biological tissues at depths of a few millimeters with a resolution up to ~100 μm. However, the ill-conditioned nature of the MFMT inverse problem severely deteriorates its reconstruction performances. Furthermore, dense spatial sampling and fine discretization of the imaging volume required for high resolution reconstructions make the sensitivity matrix (Jacobian) highly correlated, which prevents even advanced algorithms from achieving optimal solutions. In this work, we propose two computational methods to respectively increase the incoherence of the sensitivity matrix and improve the convergence rate of the inverse solver. We first apply a compressed sensing (CS) based preconditioner on either the whole sensitivity matrix or sub sensitivity matrices to reduce the coherence between columns of the sensitivity matrix. Then we employed a regularization method based on the weight iterative improvement method (WIIM) to mitigate the ill-condition of the sensitivity matrix and to drive the iterative optimization process towards convergence at a faster rate. We performed numerical simulations and phantom experiments to validate the effectiveness of the proposed strategies. In both and cases, we were able to improve the quality of MFMT reconstructions significantly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6154183PMC
http://dx.doi.org/10.1364/BOE.9.002765DOI Listing

Publication Analysis

Top Keywords

sensitivity matrix
20
mesoscopic fluorescence
8
fluorescence molecular
8
molecular tomography
8
sensitivity
6
matrix
5
improving mesoscopic
4
tomography preconditioning
4
preconditioning regularization
4
regularization mesoscopic
4

Similar Publications

A rapid and specific liquid chromatography-tandem mass spectrometry method with a wide linear range was developed and validated for the simultaneous quantification of Vitamin K1 (VK1) trans- and cis- isomers in human plasma. Bovine serum albumin solution (15%) served as a surrogate matrix for preparing the calibrators to establish the quantitative curves. After liquid-liquid extraction, VK1 trans- and cis- isomers in plasma samples were separated on a ChromCore C30 column (15 cm × 4.

View Article and Find Full Text PDF

Saikosaponin A (SSa) is an oleanane type triterpenoid saponin isolated from Radix Bupleuri (Bupleurum chinense DC). While SSa has demonstrated significant pharmacological activities including anti-inflammatory, antioxidant, and antidepressant effects, its pharmacokinetic profile remains poorly characterized. This study developed and validated a sensitive LC-MS/MS method for quantifying SSa in rat plasma.

View Article and Find Full Text PDF

Novel carbon dots-based system for "on-off-on" fluorescence consecutive sensing of Au and L-Cys.

Food Chem

September 2025

School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China. Electronic address: zh

In this study, a novel carbon dots-based system was developed for the sequential quantification of Au and L-cysteine (L-Cys). The system comprises N,F-doped carbon dots (N,F-CDs), a custom-designed miniaturized fluorimeter, and test strips. The N,F-CDs exhibit outstanding optical properties, including a large Stokes shift (127 nm) and high fluorescence intensity.

View Article and Find Full Text PDF

Fluoroquinolones are a popular class of antibiotics, which can lead to residues in food and the environment due to their abuse and illegal use. Consequently, this can pose a threat to human health. We hypothesized that a core-shell structured magnetic lanthanide metal-organic framework could serve as an effective dual-mode nanosensor, leveraging its antenna effect and peroxidase (POD)-like activity for the sensitive detection of fluoroquinolones.

View Article and Find Full Text PDF

A novel molecularly imprinted 3D COF-based magnetic solid-phase extraction combined with UHPLC-MS/MS to detect trace residues of acyclovir, penciclovir and ganciclovir in animal-derived food.

Food Chem

September 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

The residues of antiviral drugs acyclovir (ACV), penciclovir (PCV) and ganciclovir (GCV) in foods, particularly in ready-to-eat products, pose a significant threat to human health, making it urgent to develop a rapid and sensitive method for their detection. Herein, we designed a novel magnetic molecularly imprinted three-dimensional covalent organic framework (MICOF@FeO) for selective extraction of these antiviral drugs from complicated food matrix. The prepared MICOF@FeO integrates molecular recognition ability, 3D COF structural advantages and magnetic responsiveness, providing high selectivity, large adsorption capacity and facile operation for magnetic solid-phase extraction (MSPE).

View Article and Find Full Text PDF