Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Closely related taxa with dissimilar morphologies are often considered to have diverged via natural selection favoring different phenotypes. However, some studies have found these scenarios to be paired with limited or no genetic differentiation. Desmognathus quadramaculatus and D. marmoratus are sympatric salamander species thought to represent a case of ecological speciation based on distinct morphologies, but the results of previous studies have not resolved corresponding patterns of lineage divergence. Here, we use genome-wide data to test this hypothesis of ecological speciation. Population structure analyses partitioned individuals geographically, but not morphologically, into two adjacent regions of western North Carolina: Pisgah and Nantahala. Phylogenetic analyses confirmed the nominal species are nonmonophyletic and resolved deep divergence between the two geographic clusters. Model-testing overwhelmingly supported the hypothesis that lineage divergence followed geography. Finally, ecological niche modeling showed that Pisgah and Nantahala individuals occupy different climatic niches, and geographic boundaries for the two lineages correspond to differences in precipitation regimes across southern Appalachia. Overall, we reject the previous hypothesis of ecological speciation based on microhabitat partitioning. Instead, our results suggest that there are two cryptic lineages, each containing the same pair of morphotypes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.13606DOI Listing

Publication Analysis

Top Keywords

ecological speciation
16
speciation based
8
lineage divergence
8
hypothesis ecological
8
pisgah nantahala
8
ecological
5
genomic data
4
data reject
4
hypothesis
4
reject hypothesis
4

Similar Publications

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF

Antimony (Sb) and arsenic (As) are homologous elements that pose significant threats to the ecological security of soil-crop systems and the health of agricultural products due to their co-contamination. Although they share similarities in plant uptake and translocation, significant knowledge gaps remain regarding the uptake mechanisms of Sb, especially Sb(V), and its interactions with As. This review systematically summarizes the sources, chemical speciation, and bioavailability-regulating factors (e.

View Article and Find Full Text PDF

Determining species boundaries is key for appropriately assessing biodiversity. However, the continuity of the speciation process makes delimiting species a difficult task, especially for recently diverged taxa. Furthermore, past introgression may leave traces that result in reticulate evolutionary patterns, challenging the estimation of species relationships.

View Article and Find Full Text PDF

The genomics of discrete polymorphisms maintained by disruptive selection.

Trends Ecol Evol

September 2025

Genetics Course, Graduate University for Advanced Studies, Mishima, Shizuoka, Japan; Theoretical Ecology and Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.

Disruptive selection can lead to the evolution of discrete morphs. We show that particular genetic architectures, in terms of dominance, epistasis, and linkage, are likely to evolve to produce discrete morphs under disruptive selection. Recent genomic studies have revealed that causative mutations tend to cluster, sometimes as a result of chromosomal rearrangements, but we still know little about the molecular mechanisms of dominance and epistasis.

View Article and Find Full Text PDF

Sorting of ancestral polymorphism and its impact on morphological phylogenetics and macroevolution.

Evolution

September 2025

Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2.

Intraspecific phenotypic variation provides the basic substrate upon which the evolutionary processes that give rise to morphological innovation, such as adaptation, operate. Work in living clades has shown standing population-level variation fuels ecological speciation and gives rise to adaptive radiations. Despite its importance in evolutionary biology, the role of intraspecific variation in shaping phylogenetic and macroevolutionary patterns and processes has remained underexplored.

View Article and Find Full Text PDF