98%
921
2 minutes
20
A genomic segment on maize chromosome 7 influences carbon isotope composition, water use efficiency, and leaf growth sensitivity to drought, possibly by affecting stomatal properties. Climate change is expected to decrease water availability in many agricultural production areas around the globe. Therefore, plants with improved ability to grow under water deficit are urgently needed. We combined genetic, phenomic, and physiological approaches to understand the relationship between growth, stomatal conductance, water use efficiency, and carbon isotope composition in maize (Zea mays L.). Using near-isogenic lines derived from a maize introgression library, we analysed the effects of a genomic region previously identified as affecting carbon isotope composition. We show stability of trait expression over several years of field trials and demonstrate in the phenotyping platform Phenodyn that the same genomic region also influences the sensitivity of leaf growth to evaporative demand and soil water potential. Our results suggest that the studied genomic region affecting carbon isotope discrimination also harbours quantitative trait loci playing a role in maize drought sensitivity possibly via stomatal behaviour and development. We propose that the observed phenotypes collectively originate from altered stomatal conductance, presumably via abscisic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6320357 | PMC |
http://dx.doi.org/10.1007/s00122-018-3193-4 | DOI Listing |
BackgroundRAY1216 is an alpha-ketoamide-based peptide inhibitor of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) major protease (M). This study evaluated the absorption, distribution, metabolism and excretion of [C]-labelled RAY1216 by oral administration.Research design and methodsThis phase Ι study was designed to assess the pharmacokinetics, mass balance and metabolic pathways in 6 healthy Chinese adult men after a single fasting oral administration of 240 mL (containing 400 mg/100 μCi) [C] RAY1216.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.
Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
The turnover of dissolved organic matter (DOM) in soil regulated by biodegradable microplastics (MPs) has garnered much attention due to its profound impact on the storage and stability of soil organic matter. However, the transformation and reactivity of plant-derived and microbially derived DOM by microorganisms adapted to biodegradable MPs, and the involved microbial physiological processes, remain nearly unknown. Here, we added virgin and aged polylactic acid (PLA) and polyhydroxyalkanoate (PHA) to agricultural soils and incubated for 56 days.
View Article and Find Full Text PDFInorg Chem
September 2025
School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
Confronting the dual challenges of carbon neutrality and sustainable energy, photocatalytic CO reduction requires precise control over product selectivity. This study demonstrates that surface hydroxyl (-OH) density serves as a molecular switch for reaction pathways in graphene oxide/cobalt tetraphenylporphyrin (GO/CoTPP) hybrids. By tuning the reduction degree of GO supports via gradient hydrazine hydrate treatment (0-85%), we constructed catalysts with controlled -OH concentrations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Integrative Biology, University of California, Berkeley, CA 94720-3140.
Microscale symbioses can be critical to ecosystem functions, but the mechanisms of these interactions in nature are often cryptic. Here, we use a combination of stable isotope imaging and tracing to reveal carbon (C) and nitrogen (N) exchanges among three symbiotic primary producers that fuel a salmon-bearing river food web. Bulk isotope analysis, nanoSIMS (secondary ion mass spectrometry) isotope imaging, and density centrifugation for quantitative stable isotope probing enabled quantification of organism-specific C- and N-fixation rates from the subcellular scale to the ecosystem.
View Article and Find Full Text PDF