Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A selective CO evolution from photoreduction of CO in water was achieved on a noble-metal-free, carbide-based composite catalyst, as demonstrated by a CO selectivity of 98.3% among all carbon-containing products and a CO evolution rate of 29.2 μmol h, showing superiority to noble-metal-based catalyst. A rapid separation of the photogenerated electron-hole pairs and improved CO adsorption on the surface of the carbide component are responsible for the excellent performance of the catalyst. The high CO selectivity is accompanied by a predominant H evolution, which is believed to provide a proton-deficient environment around the catalyst to favor the formation of hydrogen-deficient carbon products. The present work provides general insights into the design of a catalyst with a high product selectivity and also the carbon evolution chemistry during a photocatalytic reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b08552DOI Listing

Publication Analysis

Top Keywords

selective evolution
8
evolution photoreduction
8
composite catalyst
8
catalyst high
8
catalyst
6
photoreduction metal-carbide-based
4
metal-carbide-based composite
4
catalyst selective
4
evolution
4
photoreduction water
4

Similar Publications

Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

Oral immunotherapy in children with allergic diseases: past, present and future.

Minerva Pediatr (Torino)

September 2025

Pediatric Respiratory Unit, Department of Clinical and Experimental Medicine, San Marco Hospital, University of Catania, Catania, Italy.

Allergen immunotherapy (AIT) is the only treatment capable of modifying the natural history of allergic diseases by promoting immune tolerance. Initially developed for respiratory allergies, AIT has expanded to include food allergies, particularly through oral immunotherapy (OIT). This review explores the historical evolution, current applications, and future directions of AIT in pediatric patients.

View Article and Find Full Text PDF

This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.

View Article and Find Full Text PDF

Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.

View Article and Find Full Text PDF