98%
921
2 minutes
20
Using the UV absorption spectrum to detect Organic pollutants content in water has become one of the most important methods for real-time online monitoring in the field of water quality inspection, however, the water complex and unstable components often bring much uncertain offset to the standard test. In this paper, water samples were classified firstly by analyzing UV absorption spectrum ranging from 200 nm to 400 μm including the organic substances, through the way of combining principal component analysis (PCA) with Euclidean distance. In this paper, we compared the Principal component analysis combined with partial least squares regression (PCA-PLSR) and the direct multi-wavelength absorption models combined with partial least squares regression (MWA-PLSR), not only for the real water sample but also for the analysis of different concentrations of COD standard solution. The result indicates that the measurement errors of the PCA is less than 5%, it is the smallest by using the first and second principal components as regression parameters for PLSR. Using the methods above can simultaneously achieve to classify of water samples and to measure the concentration of water quality parameters more accurately.
Download full-text PDF |
Source |
---|
J Appl Clin Med Phys
September 2025
Department of Radiation Oncology, University of Utah, Salt Lake City, Utah, USA.
Purpose: The development of on-board cone-beam computed tomography (CBCT) has led to improved target localization and evaluation of patient anatomical change throughout the course of radiation therapy. HyperSight, a newly developed on-board CBCT platform by Varian, has been shown to improve image quality and HU fidelity relative to conventional CBCT. The purpose of this study is to benchmark the dose calculation accuracy of Varian's HyperSight cone-beam computed tomography (CBCT) on the Halcyon platform relative to fan-beam CT-based dose calculations and to perform end-to-end testing of HyperSight CBCT-only based treatment planning.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, India.
Radon (Rn) is a naturally occurring radioactive gas produced by the decay of uranium-bearing minerals in rocks and soils. Long-term exposure to elevated radon levels in drinking water is associated with an increased risk of stomach and lung cancers. This study aims to assess the concentration of radon in groundwater and evaluate its potential health risks in six cancer-affected districts, i.
View Article and Find Full Text PDFAnal Bioanal Chem
September 2025
Department of Analytical Chemistry and Reference Materials, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany.
Per- and polyfluoroalkyl substances (PFASs) are a large group of emerging organic pollutants that contaminate the environment, food, and consumer products. Textiles and other outdoor products are a major source of PFAS exposure due to their water-repellent impregnations. Determination of PFASs in textiles is increasingly important for enhancing their contribution to the circular economy.
View Article and Find Full Text PDFArch Environ Contam Toxicol
September 2025
Department of Marine Biology, Texas A&M University at Galveston, 200 Seawolf Parkway, Galveston, TX, 77553, USA.
Karst water bodies are vital groundwater resources particularly vulnerable to pollution. Protecting their water quality requires documenting contaminants traditionally associated with anthropogenic activities (metals, nutrients, and fecal indicator bacteria) as well as emerging contaminants, such as antibiotic-resistant organisms (AROs) and perfluoroalkyl substances (PFAS). This study detected contaminants in karst-associated water bodies on the Yucatán Peninsula, including 10 sinkholes (cenotes) and one submarine groundwater discharge (SGD) site.
View Article and Find Full Text PDFBioresour Technol
September 2025
College of Forestry, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
The timing of microbial inoculation is a decisive factor influencing both the efficiency and quality of green waste (GW) composting. This study evaluated the effects of applying a self-developed lignocellulose-degrading compound microbial inoculum at different composting phases (mesophilic, thermophilic, and cooling) compared to a commercial Effective Microorganisms agent. Thermophilic-phase inoculation (T2) was most effective by enhancing the complementary metabolic functions between strains, thus establishing an efficient lignocellulose degradation system.
View Article and Find Full Text PDF