Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Remote ischemic preconditioning (RIPC) is an adaptive response, manifesting when local short-term ischemic preconditioning reduces damage to adjacent or distant tissues or organs. O-linked -N-acetylglucosamine (O-GlcNAc) glycosylation of intracellular proteins denotes a type of posttranslational modification that influences multiple cytoplasmic and nuclear protein functions. Growing evidence indicates that stress can induce an acute increase in O-GlcNAc levels, which can be cytoprotective. The current study aimed to determine whether RIPC can provide renoprotection against contrast-induced acute kidney injury (CI-AKI) by augmenting O-GlcNAc signaling. We established a stable model of CI-AKI using 5/6 nephrectomized rats exposed to dehydration followed by iohexol injection via the tail vein. We found that RIPC increased UDP-GlcNAc levels through the hexosamine biosynthetic pathway as well as global renal O-GlcNAcylation. RIPC-induced elevation of O-GlcNAc signaling ameliorated CI-AKI based on the presence of less tubular damage and apoptosis and the amount of reactive oxygen species. In addition, the use of alloxan, an O-GlcNAc transferase inhibitor, and azaserine, a glutamine fructose-6-phosphate amidotransferase inhibitor, neutralized the protective effect of RIPC against oxidative stress and tubular apoptosis. In conclusion, RIPC attenuates local oxidative stress and tubular apoptosis induced by contrast exposure by enhancing O-GlcNAc glycosylation levels; this can be a potentially useful approach for lowering the risk of CI-AKI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6112094PMC
http://dx.doi.org/10.1155/2018/4895913DOI Listing

Publication Analysis

Top Keywords

ischemic preconditioning
12
remote ischemic
8
acute kidney
8
kidney injury
8
contrast exposure
8
o-glcnac glycosylation
8
o-glcnac signaling
8
oxidative stress
8
stress tubular
8
tubular apoptosis
8

Similar Publications

Objective: To identify baseline factors linked to a positive response to intermittent theta-burst stimulation (iTBS) in individuals with stroke.

Design: Secondary analysis of a randomized controlled trial.

Setting: A single rehabilitation hospital.

View Article and Find Full Text PDF

Background: Liver transplantation is the definitive treatment for end-stage liver disease and some cancers. The use of livers from donors following pre-donation cardiac arrest (PDCA), especially with prolonged downtime duration, has been limited outside of the US due to fears over inferior outcomes from ischemic injury. However, PDCA may induce ischemic preconditioning, paradoxically improving post-transplant outcomes.

View Article and Find Full Text PDF

Introduction: Remote ischaemic preconditioning (RIPC) which consists of repeated brief episodes of non-lethal limb ischaemia is associated with organ protection and improved clinical outcomes through complex pathophysiological pathways. The aim of this meta-analysis was to evaluate the postoperative effects of RIPC in bowel recovery and surgical morbidity after colorectal surgery.

Methods: In strict adherence to the PRISMA guidelines, a systematic literature search was performed for studies comparing the postoperative effect RIPC in colorectal surgery.

View Article and Find Full Text PDF

Experience-mediated transcriptional memory correlates with hypoxia resistance in the nervous system of the sea hare .

Am J Physiol Regul Integr Comp Physiol

September 2025

National Aplysia Resource. Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Key Biscayne, FL, USA.

Current therapeutics for hypoxic/ischemic brain damage can benefit from insights resulting from the study of hypoxia/anoxia resistant organisms. Hypoxia resistance, however, is not a common feature in mammalian models. Being naturally exposed to hypoxic/anoxic conditions, the sea hare could become a very useful model for the study of hypoxia resistance.

View Article and Find Full Text PDF

Mechanisms underlying cardiovascular, affective, and metabolic (CAM) multimorbidity are incompletely defined. We assessed how two risk factors-chronic stress (CS) and a Western diet (WD)-interact to influence cardiovascular function, resilience, adaptability, and allostatic load (AL); explore pathway involvement; and examine relationships with behavioral, metabolic, and systemic AL. Male C57Bl/6 mice (8 weeks old, n = 64) consumed a control (CD) or WD (12%-65%-23% or 32%-57%-11% calories from fat-carbohydrate-protein) for 17 weeks, with half subjected to 2 h daily restraint stress over the final 2 weeks (CD + CS and WD + CS).

View Article and Find Full Text PDF