98%
921
2 minutes
20
During their migrations, marine predators experience varying levels of protection and face many threats as they travel through multiple countries' jurisdictions and across ocean basins. Some populations are declining rapidly. Contributing to such declines is a failure of some international agreements to ensure effective cooperation by the stakeholders responsible for managing species throughout their ranges, including in the high seas, a global commons. Here we use biologging data from marine predators to provide quantitative measures with great potential to inform local, national and international management efforts in the Pacific Ocean. We synthesized a large tracking data set to show how the movements and migratory phenology of 1,648 individuals representing 14 species-from leatherback turtles to white sharks-relate to the geopolitical boundaries of the Pacific Ocean throughout species' annual cycles. Cumulatively, these species visited 86% of Pacific Ocean countries and some spent three-quarters of their annual cycles in the high seas. With our results, we offer answers to questions posed when designing international strategies for managing migratory species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41559-018-0646-8 | DOI Listing |
Sci Total Environ
September 2025
Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Mühlenweg 22, D-85354 Freising, Germany. Electronic address:
Freshwater mussels are keystone species in aquatic ecosystems and the presence of living mussels can enhance ambient macroinvertebrate biodiversity. However, due to a lack of empirical data, the functional role of dead freshwater mussel shells as habitat for other species remains unclear. Drawing primarily from research in marine ecosystems, we hypothesized that mussel shells enrich riverbed structure by providing diverse microhabitats, especially for macroinvertebrates.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China ; email:
Prevalent in marine and freshwater ecosystems, cyanophages compose a class of double-stranded DNA viruses that specifically infect cyanobacteria. During billions of years of coevolution, cyanophages and cyanobacteria have significantly contributed to the biogeochemical cycling and genetic diversity of aquatic ecosystems. As natural predators of cyanobacteria, cyanophages hold promise as eco-friendly agents against harmful cyanobacterial blooms.
View Article and Find Full Text PDFJ Comp Physiol A Neuroethol Sens Neural Behav Physiol
September 2025
Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, 8005- 139, Portugal.
Chemical sensing of the surrounding environment is crucial for many aspects of bivalve biology, such as food detection and predator avoidance. Aquatic organisms strongly depend on chemosensory systems; however, little is known about chemosensory systems in bivalves. To understand how the carpet shell clam (Ruditapes decussatus) senses its surrounding chemical environment, we used an electrophysiological technique - the electro-osphradiogram - to assess the sensitivity of the osphradium to different putative odorants (amino acids, bile acids) and odours (predator-released cues and signals from con- and heterospecific bivalves).
View Article and Find Full Text PDFZoolog Sci
August 2025
Biotechnology Institute of Guizhou Province, Guiyang, Guizhou, China,
Rhabdocoel flatworms of the family Typhloplanidae are predominantly found in freshwater and limnoterrestrial environments, with only a few species inhabiting marine and brackish water ecosystems. In this study, a flatworm was discovered in moist soil containing nematodes in the Guizhou plateau of southwest China for the first time. A new species, Zuo, gen.
View Article and Find Full Text PDFTrends Microbiol
September 2025
Department of Biology, Hofstra University, Hempstead, NY, USA. Electronic address:
Protists comprise the vast majority of eukaryotic genetic and functional diversity. While they have traditionally been difficult to study due to their small size and varied phenotypes, environmental sequencing studies have revealed the stunning diversity and abundance of protists in all ecosystems. Protists are key primary and secondary producers across many biomes, with ecological specializations that range from mutualism to parasitism, complex predation behaviors, mixotrophy, detritivory, and saprotrophy.
View Article and Find Full Text PDF