Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Obesity induces metabolic disorders such as type 2 diabetes, hypertension, and cardiovascular diseases and has become a global health concern. Recent studies imply that fat accumulation in nonadipose tissue correlates with metabolic disorders. However, there are no suitable animal models to evaluate this phenomenon. This study investigated the characteristics of metabolic disorders found in cotton rat (Sigmodon hispidus). Blood biochemical examinations revealed that cotton rats, predominantly males, developed hyperinsulinemia, hyperglycemia, and dyslipidemia when fed a normal diet. The islets increased in size through β-cell hyperplasia, which was associated with serum insulin level in both sexes, strongly indicating insulin resistance. In male cotton rats, oxidative stress was observed in β cells, and macrophage infiltration into the visceral white adipose tissue was reported, both of which were associated with serum insulin level without visceral obesity. In contrast, female cotton rats developed hyperinsulinemia without histopathological changes that were reported in males. Adipocytes were found to be accumulated in the pancreas but not in the liver of both sexes during aging. Pancreatic fat accumulation was associated with the serum insulin level only in females. Taken together, cotton rats developed metabolic disorders associated with visceral fat inflammation in the absence of obesity. In addition, pancreatic ectopic fat may also be related to the early stages of these conditions. Thus, the cotton rat may serve as a novel and useful model for metabolic disorders characterized by visceral adipose inflammation and ectopic fat accumulation in the pancreas without obesity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00441-018-2908-9DOI Listing

Publication Analysis

Top Keywords

metabolic disorders
24
cotton rats
16
cotton rat
12
fat accumulation
12
associated serum
12
serum insulin
12
insulin level
12
rat sigmodon
8
sigmodon hispidus
8
disorders associated
8

Similar Publications

Nebulized Lipid Nanoparticles Deliver mRNA to the Liver for Treatment of Metabolic Diseases.

Nano Lett

September 2025

State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.

An optimal administration approach is critical for effective mRNA delivery and treatment. Nebulizer inhalation offers a mild, convenient, and noninvasive strategy with high translational potential but primarily focused on lung delivery. In this study, we found that surface charges influence tissue targeting of mRNA lipid nanoparticle (mRNA-LNP) postnebulization.

View Article and Find Full Text PDF

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease.

View Article and Find Full Text PDF

Silkworms are emerging as a sustainable food source to address global food security, with their proteins recognized for nutritional and medicinal benefits. However, the impact of silkworm oil on immunological and pharmacological effects remains unexplored. This study explores the effects of the muga (Antheraea assamensis Helfer) silkworm pupal oil fraction (MP) on palmitic acid (PA) induced hepatic steatosis, inflammation, and oxidative stress.

View Article and Find Full Text PDF

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF