98%
921
2 minutes
20
Previous studies have demonstrated that CASPASE 8 can generate a prosurvival signal by inhibiting necroptosis via the cleavage of the deubiquitinating enzyme CYLD. Cleavage of CYLD at D215 results in the generation of a 25 kD N-terminal fragment and degradation of the C-terminal fragment containing the catalytic domain. Since CYLD is required for TNF-induced necroptosis, its proteolysis is necessary and sufficient to suppress necroptosis and generate a survival signal. Here we describe how to visualize CYLD proteolysis by western blot analysis, as a measure of CASPASE 8 activity and inhibition of necroptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-8754-2_18 | DOI Listing |
Tissue Barriers
May 2025
BRIC-National Centre for Cell Science, S. P. Pune University Campus, Pune, India.
The ubiquitin-proteasome system (UPS) carries immense significance concerning cellular homeostasis that encompasses both ubiquitination and deubiquitination as key facets for maintaining protein stability. The deubiquitinating enzymes (DUBs) have emerged as critical regulators of proteostasis, neuroinflammation and blood-brain barrier (BBB) integrity by controlling the fate of crucial proteins associated with barrier architectures in CNS and neurodegenerative disorders (NDs) alike. However, a concrete understanding of their specific neurodevelopmental and neuroprotective functions is yet to be discerned.
View Article and Find Full Text PDFFront Immunol
June 2024
Research Unit Signaling and Translation, Group Signaling and Immunity, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
CARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes.
View Article and Find Full Text PDFCancer Lett
January 2022
Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea; College of Medicine, Hanyang University, Seoul, 04763, South Korea. Electronic address:
The NADPH oxidase (Nox) family of enzymes is solely dedicated in the generation of reactive oxygen species (ROS). ROS generated by Nox are involved in multiple signaling cascades and a myriad of pathophysiological conditions including cancer. As such, ROS seem to have both detrimental and beneficial roles in a number of cellular functions, including cell signaling, growth, apoptosis and proliferation.
View Article and Find Full Text PDFExp Cell Res
October 2019
Immunotherapy Institute, Fujian Medical University, Fuzhou, 350004, PR China.
TGF-β-activated kinase 1 (TAK1) plays a pivotal role in Toll-like receptor (TLR) signaling pathway. However, the mechanisms controlling its activity remain poorly understood. Here, we show that leucine-rich repeat containing 62 (LRRC62), a previously uncharacterized protein, negatively regulates TLR signaling by targeting TAK1.
View Article and Find Full Text PDFMethods Mol Biol
May 2019
Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Previous studies have demonstrated that CASPASE 8 can generate a prosurvival signal by inhibiting necroptosis via the cleavage of the deubiquitinating enzyme CYLD. Cleavage of CYLD at D215 results in the generation of a 25 kD N-terminal fragment and degradation of the C-terminal fragment containing the catalytic domain. Since CYLD is required for TNF-induced necroptosis, its proteolysis is necessary and sufficient to suppress necroptosis and generate a survival signal.
View Article and Find Full Text PDF