Molecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) pair, combine solar energy conversion, storage, and release in a simple one-molecule process. The energy-releasing reaction QC to NBD can be controlled electrochemically. In this study, we used in-situ photoelectrochemical infrared spectroscopy (PEC-IRRAS) together with density functional theory (DFT) calculations to investigate how electron donating (EDG) and electron withdrawing (EWG) groups in the push-pull system of the MOST pair affect the electrocatalytic properties of the electrochemically triggered back-conversion.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2025
We have synthesized and characterized a series of simple norbornadiene(NBD)-triazine architectures, including multistate photoswitches with unprecedentedly high information storage densities. The simple mono-NBDs served as suitable model systems to investigate the underlying absorption and switching characteristics. To increase the complexity stepwise, a bis-NBD derivative with a symmetric substitution pattern was investigated next.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2025
Anthropogenic persistent organic pollutants pose a pressing threat to the environment and human health. They can be found in water bodies all around the world at low but hazardous concentrations. Typical representatives of this contaminant class are polychlorinated biphenyls (PCBs).
View Article and Find Full Text PDFBeilstein J Org Chem
April 2025
We report the synthesis and characterization of heteroatom-incorporated norbornadiene (NBD) derivatives. Push-pull substitution on the 2 and 3 position as well as introduction of oxygen or nitrogen at position 7 of the NBD scaffold have led to the development of a new family of photoswitches. We studied the potential conversion of norbornadiene to quadricyclane (QC) isomers.
View Article and Find Full Text PDFIntroduction: MALT1 paracaspase acts as a molecular scaffold and a proteolytic enzyme in immune cells. MALT1 has emerged as a promising drug target for cancer therapy, and especially for targeting MALT1 in aggressive lymphomas. Drug discovery programs have yielded potent and selective MALT1 protease inhibitors.
View Article and Find Full Text PDFRibosomal biosynthesis in nucleoli is an energy-demanding process driven by all RNA polymerases and hundreds of auxiliary proteins. We investigated how this process is regulated in activated T lymphocytes by T cell receptor (TCR) signals and the multiprotein complexes mTORC1 and mTORC2, both of which contain the kinase mTOR. Deficiency in mTORC1 slowed the proliferation of T cells, with further delays in each consecutive division, an effect not seen with deficiency in mTORC2.
View Article and Find Full Text PDFA20 is a dual-function ubiquitin-editing enzyme that maintains immune homeostasis by restraining inflammation. Although A20 serves a similar negative feedback function for T-cell receptor (TCR) signaling, the molecular mechanisms utilized and their ultimate impact on human T-cell function remain unclear. TCR engagement triggers the assembly of the CARD11-BCL10-MALT1 (CBM) protein complex, a signaling platform that governs the activation of downstream transcription factors including NF-κB and c-Jun/AP-1.
View Article and Find Full Text PDFWe report the synthesis and characterization of library of new 2,3-disubstituted norbornadiene/quadricyclane couples. For the first time, the para-tolylsulfone moiety was employed as electron-withdrawing substituent in combination with a variety of different electron donors as counterparts. Comprehensive characterization was conducted for every interconversion couple.
View Article and Find Full Text PDFBackground: Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies.
View Article and Find Full Text PDFCARD-BCL10-MALT1 (CBM) signalosomes connect distal signaling of innate and adaptive immune receptors to proximal signaling pathways and immune activation. Four CARD scaffold proteins (CARD9, 10, 11, 14) can form seeds that nucleate the assembly of BCL10-MALT1 filaments in a cell- and stimulus-specific manner. MALT1 (also known as PCASP1) serves a dual function within the assembled CBM complexes.
View Article and Find Full Text PDFUpon SARS-CoV-2 infection, patients with severe forms of COVID-19 often suffer from a dysregulated immune response and hyperinflammation. Aberrant expression of cytokines and chemokines is associated with strong activation of the immunoregulatory transcription factor NF-κB, which can be directly induced by the SARS-CoV-2 protein NSP14. Here, we use NSP14 mutants and generated cells with host factor knockouts (KOs) in the NF-κB signaling pathways to characterize the molecular mechanism of NSP14-induced NF-κB activation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2023
Constitutive mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) activity drives survival of malignant lymphomas addicted to chronic B-cell receptor signaling, oncogenic CARD11, or the API2-MALT1 (also BIRC3::MALT1) fusion oncoprotein. Although MALT1 scaffolding induces NF-κB-dependent survival signaling, MALT1 protease function is thought to augment NF-κB activation by cleaving signaling mediators and transcriptional regulators in B-cell lymphomas. However, the pathological role of MALT1 protease function in lymphomagenesis is not well understood.
View Article and Find Full Text PDFThe transition to renewable energy sources comes along with the search for new energy storage solutions. Molecular solar thermal systems directly harvest and store solar energy in a chemical manner. By a suitable molecular design, a higher overall efficiency can be achieved.
View Article and Find Full Text PDFJ Immunother Precis Oncol
May 2023
The paracaspase MALT1 has emerged as a key regulator of immune signaling, which also promotes tumor development by both cancer cell-intrinsic and -extrinsic mechanisms. As an integral subunit of the CARD11-BCL10-MALT1 (CBM) signaling complex, MALT1 has an intriguing dual function in lymphocytes. MALT1 acts as a scaffolding protein to drive activation of NF-κB transcription factors and as a protease to modulate signaling and immune activation by cleavage of distinct substrates.
View Article and Find Full Text PDFMALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6 ablation or destruction of MALT1-TRAF6 interaction provokes activation of conventional T (Tconv) effector cells. In contrast, MALT1 protease activity controls the development and suppressive function of regulatory T (Treg) cells in a T cell-intrinsic manner.
View Article and Find Full Text PDFIt has been shown that innate immune responses can adopt adaptive properties such as memory. Whether T cells utilize innate immune signaling pathways to diversify their repertoire of effector functions is unknown. Gasdermin E (GSDME) is a membrane pore-forming molecule that has been shown to execute pyroptotic cell death and thus to serve as a potential cancer checkpoint.
View Article and Find Full Text PDFJ Immunother Cancer
October 2022
An innovative strategy for cancer therapy is to combine the inhibition of cancer cell-intrinsic oncogenic signaling with cancer cell-extrinsic immunological activation of the tumor microenvironment (TME). In general, such approaches will focus on two or more distinct molecular targets in the malignant cells and in cells of the surrounding TME. In contrast, the protease Mucosa-associated lymphoid tissue protein 1 (MALT1) represents a candidate to enable such a dual approach by engaging only a single target.
View Article and Find Full Text PDFNat Biotechnol
January 2023
Understanding the mechanisms of coronavirus disease 2019 (COVID-19) disease severity to efficiently design therapies for emerging virus variants remains an urgent challenge of the ongoing pandemic. Infection and immune reactions are mediated by direct contacts between viral molecules and the host proteome, and the vast majority of these virus-host contacts (the 'contactome') have not been identified. Here, we present a systematic contactome map of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with the human host encompassing more than 200 binary virus-host and intraviral protein-protein interactions.
View Article and Find Full Text PDFMolecular solar thermal (MOST) systems, such as the norbornadiene/quadricyclane (NBD/QC) couple, combine solar energy conversion, storage, and release in a simple one-photon one-molecule process. Triggering the energy release electrochemically enables high control of the process, high selectivity, and reversibility. In this work, the influence of the molecular design of the MOST couple on the electrochemically triggered back-conversion reaction was addressed for the first time.
View Article and Find Full Text PDFAlternative splicing plays key roles for cell type-specific regulation of protein function. It is controlled by cis-regulatory RNA elements that are recognized by RNA binding proteins (RBPs). The MALT1 paracaspase is a key factor of signaling pathways that mediate innate and adaptive immune responses.
View Article and Find Full Text PDFAlthough CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations.
View Article and Find Full Text PDFCARD11 acts as a gatekeeper for adaptive immune responses after T cell or B cell antigen receptor (TCR/BCR) ligation on lymphocytes. PKCθ/β-catalyzed phosphorylation of CARD11 promotes the assembly of the CARD11-BCL10-MALT1 (CBM) complex and lymphocyte activation. Here, we demonstrated that PKCθ/β-dependent CARD11 phosphorylation also suppressed CARD11 functions in T or B cells.
View Article and Find Full Text PDF