Synthesis and photoinduced switching properties of C-heteroatom containing push-pull norbornadiene derivatives.

Beilstein J Org Chem

Department Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger Straße 10, 91058 Erlangen, Germany.

Published: April 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report the synthesis and characterization of heteroatom-incorporated norbornadiene (NBD) derivatives. Push-pull substitution on the 2 and 3 position as well as introduction of oxygen or nitrogen at position 7 of the NBD scaffold have led to the development of a new family of photoswitches. We studied the potential conversion of norbornadiene to quadricyclane (QC) isomers. As main investigation tools, UV-vis and NMR spectroscopy were utilized. We determined significant spectral features of the formed NBD species, including λ and λ values, all of which exhibit redshifts compared to their isocyclic counterparts. Additionally, the selected QC isomers were subjected to thermal and catalytic back-conversion studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035880PMC
http://dx.doi.org/10.3762/bjoc.21.64DOI Listing

Publication Analysis

Top Keywords

synthesis photoinduced
4
photoinduced switching
4
switching properties
4
properties c-heteroatom
4
c-heteroatom push-pull
4
push-pull norbornadiene
4
norbornadiene derivatives
4
derivatives report
4
report synthesis
4
synthesis characterization
4

Similar Publications

Nanoimprinting Pattern on Responsive Microwrinkles for Dynamic Optical Diffraction and Reflection.

ACS Nano

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.

Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.

View Article and Find Full Text PDF

A CuBiO/TiO p-n Heterojunction for Enhancing the Barrier Protection of a Nickel-Based Layer on the Magnesium Alloy.

J Phys Chem Lett

September 2025

Precise Synthesis and Function Development Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, PR China.

Herein, CuBiO microspheres were first deposited on TiO nanotube arrays to develop a p-n CuBiO/TiO heterojunction by a facile hydrothermal protocol. The variations in the photoinduced open-circuit potential, photocurrent, and electrochemical parameters of the nickel-plated magnesium alloy (Mg/Ni) demonstrated the remarkably strengthened photoelectrochemical efficiency and photocathodic protection (PCP) capability caused by the CuBiO modification. This enhancement is attributed to establishing a built-in electric field and intensified light absorption in a broadened wavelength spectrum, confirmed by the valence band XPS and ultraviolet-visible spectra.

View Article and Find Full Text PDF

Efficient Carrier Separation via Ru@TS@C Zeolite: Enabling Photo-Cathodes for High-Efficiency Photo-Assisted Metal-Air Batteries.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.

Neutral aqueous Zn-air batteries (ZABs), while promising for extended lifespans and recyclability compared to alkaline systems, are hindered by sluggish kinetics that limit energy efficiency and power output. Here, we report an effective approach to construct a photo-assisted near-neutral ZAB based on a photo-responsive titanium silicalite-1 zeolite (TS-1). The incorporation of Ru active centers into the 3D porous architecture of TS@C (Ru@TS@C), which exhibits remarkably enhanced electronic conduction, creates interconnected conductive pathways.

View Article and Find Full Text PDF

Complementary biomolecular coassemblies direct energy transport for cardiac photostimulators.

Proc Natl Acad Sci U S A

September 2025

Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697.

Charge and energy transport within living systems are fundamental processes that enable the autonomous function of excitable cells and tissues. To date, localized control of these transport processes has been enabled by genetic modification approaches to render light sensitivity to cells. Here, we present peptidic nanoassemblies as constituents of a cardiac biomaterial platform that leverages complementary sequence interactions to direct photoinduced energy transport at the cellular interface.

View Article and Find Full Text PDF

Photoinduced Palladium-Catalyzed C(sp)-H Phosphinoylation of Tetrahydroisoquinoline with Cl-Phosphine Oxide.

J Org Chem

September 2025

Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Zhejiang Key Laboratory of Organosilicon Material Technology, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.

A photoinduced palladium-catalyzed radical C(sp)-H phosphinoylation of tetrahydroisoquinoline was reported. Easily accessible and inexpensive Cl-phosphine oxides were employed as phosphorus radical sources. The key steps in this strategy involve the generation of phosphorus and carbon radicals using the excited palladium complex.

View Article and Find Full Text PDF