98%
921
2 minutes
20
The peripheral nervous system has the potential to regenerate after nerve injury owing to the intrinsic regrowth ability of neurons and the permissive microenvironment. The regenerative process involves numerous gene expression changes, in which transcription factors play a critical role. Previously, we profiled dysregulated genes in dorsal root ganglion neurons at different time points (0, 3 and 9 hours, and 1, 4 and 7 days) after sciatic nerve injury in rats by RNA sequencing. In the present study, we investigated differentially expressed transcription factors following nerve injury, and we identified enriched molecular and cellular functions of these transcription factors by Ingenuity Pathway Analysis. This analysis revealed the dynamic changes in the expression of transcription factors involved in cell death at different time points following sciatic nerve injury. In addition, we constructed regulatory networks of the differentially expressed transcription factors in cell death and identified some key transcription factors (such as STAT1, JUN, MYC and IRF7). We confirmed the changes in expression of some key transcription factors (STAT1 and IRF7) by quantitative reverse transcription-polymerase chain reaction. Collectively, our analyses provide a global overview of transcription factor changes in dorsal root ganglia after sciatic nerve injury and offer insight into the regulatory transcription factor networks involved in cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6126133 | PMC |
http://dx.doi.org/10.4103/1673-5374.237183 | DOI Listing |
Plant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFPlant Cell
September 2025
Department of Plant Sciences, College of Biological Sciences, State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
Plant thermomorphogenesis is a critical adaptive response to elevated ambient temperatures. The transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) integrates diverse environmental and phytohormone signals to coordinate thermoresponsive growth. However, the cellular mechanisms underlying plant thermomorphogenic growth remain poorly understood.
View Article and Find Full Text PDFBiochem J
September 2025
Cancer Research UK Scotland Institute, Glasgow, G61 1BD, U.K.
RNA cap formation on RNA polymerase II transcripts is regulated by cellular signalling pathways during development and differentiation, adaptive and innate immune responses, during the cell cycle and in response to oncogene deregulation. Here, we discuss how the RNA cap methyltransferase, RNA guanine-7 methyltransferase (RNMT), functions to complete the 7-methyl-guanosine or m7G cap. The mechanisms by which RNMT is regulated by signalling pathways, co-factors and other enzymes are explored.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.
View Article and Find Full Text PDFPLoS One
September 2025
Biobank of Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.
View Article and Find Full Text PDF