98%
921
2 minutes
20
Ocean temperatures have been accelerating at an alarming rate mainly due to anthropogenic fossil fuel emissions. This has led to an increase in the severity and duration of coral bleaching events. Predicted projections for the state of reefs do not take into account the rates of adaptation or acclimatization of corals as these have not as yet been fully documented. To determine any possible changes in thermal tolerances, manipulative experiments were conducted to precisely replicate the initial, pivotal research defining threshold temperatures of corals nearly five decades ago. Statistically higher calcification rates, survivorship, and lower mortality were observed in , and in the present study at 31 °C compared to the original 1970 findings. First whole colony mortality was also observed to occur sooner in 1970 than in 2017 in (3 d vs. 15 d respectively), (3 d vs. 17 d), and in (3 d vs. 13 d). Additionally, bleaching occurred sooner in 1970 compared to the 2017 experiment across species. Irradiance was an important factor during the recovery period for mortality but did not significantly alter calcification. Mortality was decreased by 17% with a 50% reduction in irradiance during the recovery period. These findings provide the first evidence of coral acclimatization or adaptation to increasing ocean temperatures for corals collected from the same location and using close replication of the experiment conducted nearly 50 years earlier. An important factor in this increased resistance to elevated temperature may be related to removal of the discharge of treated sewage into Kāne'ohe Bay and resulting decrease in nitrification and eutrophication. However, this level of increased temperature tolerance may not be occurring rapidly enough to escape the projected increased intensity of bleaching events, as evidenced by the recent 2014 and 2015 high coral mortality in Hawai'i (34%) and in the tropics worldwide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086081 | PMC |
http://dx.doi.org/10.7717/peerj.5347 | DOI Listing |
Pest Manag Sci
September 2025
IRTA, Postharvest, Fruitcentre, Lleida, Spain.
Background: Almond blossom blight, caused by Monilinia spp., is a notable fungal disease associated with intensified crop management practices. In this study, we aimed to investigate the epidemiology of Monilinia spp.
View Article and Find Full Text PDFMar Environ Res
August 2025
Marine Macroecology and Biogeography Lab, Universidade Federal de Santa Catarina, Brazil.
Transition zones exhibit a unique combination of abiotic characteristics derived from the merging of two distinct areas, hosting communities with different thermal tolerance and distribution ranges. Given these characteristics, these zones are key to unmasking the effects of climate change on biodiversity since rapid changes in the sea temperature can favor some populations more than others. This study aimed to investigate the community structure of reef fish in seven islands of the southwestern Atlantic in a transition zone.
View Article and Find Full Text PDFSci Total Environ
September 2025
Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India. Electronic address:
Extreme rainfall during the Indian Summer Monsoon (ISM) accounts for approximately 27 % of the total seasonal rainfall. Most of this moisture is transported from the Indian Ocean. Amid ongoing warming of the Indian Ocean, 2023 stood out as one of the warmest monsoon years on record.
View Article and Find Full Text PDFFood Chem
September 2025
College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China. Electronic address:
This study investigated the impact of cold water with increasing temperature (CI) and boiling water with constant temperature (BC) steaming on the metabolites and taste of Eriocheir sinensis. Sensory evaluation and electronic tongue analysis indicated that CI group enhanced ovaries umami, whereas BC group increased muscle umami (p < 0.05).
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2025
Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong, 53064, Republic of Korea. Electronic address:
Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.
View Article and Find Full Text PDF