98%
921
2 minutes
20
F-FIBT, 2-(p-Methylaminophenyl)-7-(2-[F]fluoroethoxy)imidazo-[2,1-b]benzothiazole, is a new selective PET tracer under clinical investigation to specifically image β-amyloid depositions (Aβ) in humans in-vivo that binds to Aβ with excellent affinity (K 0.7 ± 0.2) and high selectivity over tau and α-synuclein aggregates (Ki > 1000 nM). We aimed to characterize F-FIBT in a series of patients with different clinical-pathophysiological phenotypes and to compare its binding characteristics to the reference compound PiB. Six patients (mild late-onset and moderate early-onset AD dementia, mild cognitive impairment due to AD, intermediate likelihood, mild behavioral variant of frontotemporal dementia, subjective memory impairment without evidence of neurodegeneration, and mild dementia due to Posterior Cortical Atrophy) underwent PET imaging with F-FIBT on PET/MR. With the guidance of MRI, PET images were corrected for partial volume effect, time-activity curves (TACs) of regions of interest (ROIs) were extracted, and non-displaceable binding potentials (BPnd), standardized uptake value ratios (SUVR), and distribution volume ratio (DVR) were compared. Specific binding was detected in the cases with evidence of the AD pathophysiological process visualized in images of BPnd, DVR and SUVR, consistently with patterns of different tracers in previous studies. SUVR showed the highest correlation with clinical severity. The previous preclinical characterization and the results of this case series suggest the clinical usefulness of FIBT as a selective and highly affine next-generation F-labeled tracer for amyloid-imaging with excellent pharmacokinetics in the diagnosis of neurodegenerative diseases. The results compare well to the gold standard PiB and hence support further investigation in larger human samples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515824 | PMC |
http://dx.doi.org/10.1038/s41380-018-0203-5 | DOI Listing |
J Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFToxicol Mech Methods
September 2025
Laboratory of Mutagenesis, Institute of Biological Sciences (ICB I), Federal University of Goias, Goiania, Goias, Brazil.
While agriculture is essential for food security, the intensive use of pesticides in modern farming practices raises concerns on their impact, in particular from a One Health perspective. In 2024, Brazil approved 663 new pesticides, a 19% increase in comparison with 2023. The occupational exposure of rural workers is known to be associated with a range of health outcomes, including cancer.
View Article and Find Full Text PDFBrain Behav
September 2025
Department of Neurology, NHO Nishiniigata Chuo Hospital, Niigata, Japan.
Background: Y69H (p.Y89H) variant hereditary transthyretin (ATTRv) amyloidosis causes meningeal amyloidosis, with mutant TTR deposits localized to the leptomeninges and vitreous body.
Methods: The effect of tafamidis meglumine on neurological disorders, such as the frequency of transient focal neurological episodes (TFNEs), magnetic resonance imaging (MRI) findings, and TTR levels in cerebrospinal fluid, was investigated in two patients diagnosed with Y69H ATTRv mutation.
Mol Ther
September 2025
Department of Health Management & Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, China; Laboratory of Aging Research, School of Medicine, University of Electronic Science and Technology of China, Chengdu
Brain aging is a major risk factor for cognitive decline and neurodegenerative diseases, driven by synaptic loss, reduced synaptic function, and inflammation. However, the molecular mechanisms underlying these dysfunctions remain unclear. Here, we conducted comparative transcriptomic analyses of brain regions (cortex and hippocampus) and kidney tissues, a peripheral organ with documented age-related dysfunction.
View Article and Find Full Text PDFNeuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.
View Article and Find Full Text PDF