Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Importance: Psychoticlike experiences (PLEs) are subclinical manifestations of psychotic symptoms and may reflect an increased vulnerability to psychotic disorders. Contemporary models of psychosis propose that dysfunctional reward processing is involved in the cause of these clinical illnesses.

Objective: To examine the neuroimaging profile of healthy adolescents at 14 and 19 years old points with PLEs, using a reward task.

Design, Setting, And Participants: A community-based cohort study, using both a cross-sectional and longitudinal design, was conducted in academic centers in London, Nottingham, United Kingdom, and Dublin, Ireland; Paris, France; and Berlin, Hamburg, Mannheim, and Dresden, Germany. A group of 1434 healthy adolescent volunteers was evaluated, and 2 subgroups were assessed at ages 14 and 19 years. Those who scored as either high or low PLE (based on the upper and lower deciles) on the Community Assessment of Psychic Experiences Questionnaire (CAPE-42) at age 19 years were included in the analysis. The study was conducted from January 1, 2016, to January 1, 2017.

Main Outcomes And Measures: Participants were assessed at age 14 and 19 year points using functional magnetic resonance imaging while performing a monetary incentive delay reward task. A first-level model focused on 2 predefined contrasts of anticipation and feedback of a win. The second-level analysis examined activation within the reward network using an a priori-defined region of interest approach. The main effects of group, time, and their interaction on brain activation were examined.

Results: Of the 1434 adolescents, 2 groups (n = 149 each) (high PLEs, n = 149, 50 [33.6%] male; low PLEs, n = 149, 84 [56.4%] male) were compared at ages 14 and 19 years. Two regions within the left and right middle frontal gyri showed a main effect of time on brain activation (F1, 93 = 5.559; P = .02; F1, 93 = 5.009; P = .03, respectively); there was no main effect of group. One region within the right middle frontal gyrus demonstrated a significant time × group interaction (F1, 93 = 7.448; P = .01).

Conclusion And Relevance: The findings are consistent with evidence implicating alterations in prefrontal and striatal function during reward processing in the etiology of psychosis. Given the nature of this nonclinical sample this may reflect a combination of aberrant salience yielding abnormal experiences and a compensatory cognitive control mechanism necessary to contextualize them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233806PMC
http://dx.doi.org/10.1001/jamapsychiatry.2018.1973DOI Listing

Publication Analysis

Top Keywords

reward processing
12
psychoticlike experiences
8
ages years
8
brain activation
8
ples n = 149
8
middle frontal
8
reward
6
examination neural
4
neural basis
4
basis psychoticlike
4

Similar Publications

Decision-making often involves evaluating trade-offs between potential rewards and aversive outcomes, engaging both motivational drive and affective judgment. The ventral striatum (VS) and ventral pallidum (VP) are key regions in these processes. While the VS is associated with reward processing and incentive motivation, the VP encodes hedonic value and mediates motivated behaviors.

View Article and Find Full Text PDF

Distinct prelimbic cortex ensembles encode response execution and inhibition.

Proc Natl Acad Sci U S A

September 2025

Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224.

Learning when to initiate or withhold actions is essential for survival, requiring the integration of past experiences with new information to adapt to changing environments. The prelimbic cortex (PL) plays a central role in this process, with a stable PL neuronal population (ensemble) recruited during operant reward learning to encode response execution. However, it is unknown how this established reward-learning ensemble adapts to changing reward contingencies, such as reward omission during extinction.

View Article and Find Full Text PDF

Previous studies suggested that acute stress can impair flexible goal-directed action control in favor of habitual action control. In addition, there is evidence that acute stress differentially affects the processing of rewards and punishments. Therefore, we aimed at investigating whether acute stress affects the balance between goal-directed and habitual behavior not only for behavior aiming at reward but also for behavior motivated by avoiding punishments.

View Article and Find Full Text PDF

This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.

View Article and Find Full Text PDF

Every day we encounter situations in which decisions require trade-offs between the delay to one reward and the likelihood of receiving another reward. The current study was designed to extend a general discounting framework to gain insights into this fundamental trade-off process. Forty-three undergraduates adjusted the probability of receiving an immediate hypothetical monetary reward (either $200 or $10,000) until that probabilistic reward was judged subjectively equal in value to the same reward received with certainty after a delay (ranging from 1 month to 25 years).

View Article and Find Full Text PDF