98%
921
2 minutes
20
Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072114 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201793 | PLOS |
Gastric Cancer
September 2025
Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Background: Immune checkpoint inhibitors (ICIs) play a pivotal role in the treatment of advanced gastric cancer (GC). However, the biomarkers used to predict ICI efficacy are limited due to their reliance on single or static tumor characteristics. This study aims to develop a machine learning (ML) model that incorporates dynamic changes in clinlabomics data to optimize the predictive accuracy of ICI efficacy.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
September 2025
The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
Purpose: To enhance the temporal feature learning capability of the laparoscopic cholecystectomy phase recognition model and address the class imbalance issue in the training data, this paper proposes an Xception-dual-channel LSTM fusion model based on a dynamic data balancing strategy.
Methods: The model dynamically adjusts the undersampling rate for each surgical phase, extracting short video clips from the original data as training samples to balance the data distribution and mitigate biased learning. The Xception model, utilizing depthwise separable convolutions, extracts fundamental visual features frame by frame, which are then passed to a dual-channel LSTM network.
J Chem Inf Model
September 2025
Key Laboratory of Micro-nano Sensing and IoT of Wenzhou, Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China.
Transcription factors (TFs) are essential proteins that regulate gene expression by specifically binding to transcription factor binding sites (TFBSs) within DNA sequences. Their ability to precisely control the transcription process is crucial for understanding gene regulatory networks, uncovering disease mechanisms, and designing synthetic biology tools. Accurate TFBS prediction, therefore, holds significant importance in advancing these areas of research.
View Article and Find Full Text PDFJ Food Sci
September 2025
College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, China.
Primary agricultural products are closely related to our daily lives, as they serve not only as raw materials for food processing but also as products directly purchased by consumers. These products face the issue of freshness decline and spoilage during both production and consumption. Freshness degradation induces sensory deterioration and nutritional loss and promotes harmful substance accumulation, causing gastrointestinal issues or even endangering life.
View Article and Find Full Text PDFAm J Ind Med
September 2025
National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, Ohio, USA.
Background: Workers in industry settings are often exposed to complex noise, which poses a greater risk to hearing loss than continuous noise at equivalent energy levels. Previous studies have identified kurtosis as an essential metric for evaluating complex noise-induced hearing loss (NIHL). This study aimed to characterize the distribution of workers exposed to complex noise, examine the associations between kurtosis and changes in hearing thresholds at various frequencies, and explore kurtosis's role in estimating NIHL and its integration into occupational hearing loss prevention programs.
View Article and Find Full Text PDF