High-performance broadband heterojunction photodetectors based on multilayered PtSe directly grown on a Si substrate.

Nanoscale

School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, China.

Published: August 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Two-dimensional group-10 transition metal dichalcogenides have recently attracted increasing research interest because of their unique electronic and optoelectronic properties. Herein, we present vertical hybrid heterojunctions of multilayered PtSe2 and Si, which take advantage of large-scale homogeneous PtSe2 films grown directly on Si substrates. These heterojunctions show obvious rectifying behavior and a pronounced photovoltaic effect, enabling them to function as self-driven photodetectors operating at zero bias. The photodetectors can operate in both photovoltage and photocurrent modes, with responsivity values as high as 5.26 × 106 V W-1 and 520 mA W-1 at 808 nm, respectively. The Ilight/Idark ratio, specific detectivity, and response speed are 1.5 × 105, 3.26 × 1013 Jones, and 55.3/170.5 μs, respectively. Furthermore, the heterojunctions are highly sensitive in a broad spectral region ranging from deep ultraviolet to near-infrared (NIR) (200-1550 nm). Because of the strong NIR light absorption of PtSe2, the heterojunctions exhibit photocurrent responsivities of 33.25 and 0.57 mA W-1 at telecommunication wavelengths of 1310 and 1550 nm, respectively. Considering the excellent performance of the PtSe2/Si heterojunctions, they are highly suitable for application in high-performance broadband photodetectors. The generality of the above results also signifies that the proposed in situ synthesis method has great potential for future large-scale optoelectronic device integration.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8nr04004dDOI Listing

Publication Analysis

Top Keywords

high-performance broadband
8
heterojunctions highly
8
heterojunctions
5
broadband heterojunction
4
photodetectors
4
heterojunction photodetectors
4
photodetectors based
4
based multilayered
4
multilayered ptse
4
ptse directly
4

Similar Publications

Passive daytime radiative cooling (PDRC) offers a sustainable solution to global energy challenges by dissipating heat without energy input. However, conventional PDRC materials face trade-offs between biodegradability, color integration, optical transparency, and mechanical robustness. Herein, a biomimetic, structurally colored PDRC film fabricated via evaporation-induced self-assembly of cellulose nanocrystals (CNCs), betaine, and polyvinyl alcohol was developed.

View Article and Find Full Text PDF

Broadband anisotropic photodetectors show great promise for polarization-sensitive imaging and multispectral optoelectronic systems yet face critical challenges in material anisotropy modulation and broadband sensitivity. Weyl semimetals exhibit giant optical anisotropy and tunable heterojunction band alignment, enabling high-performance anisotropic photodetection. Herein, ultrabroadband PDs based on the NbNiTe (niobium nickel telluride), enabled by antenna integration and heterostructure engineering, achieve high sensitivity from visible to Terahertz (THz).

View Article and Find Full Text PDF

Design of multifunctional metasurface devices with tunable propagation properties.

Phys Chem Chem Phys

September 2025

College of Materials Science and Engineering, Hohai University, Nanjing 210098, China.

The integration of terahertz (THz) technology with metasurfaces has attracted attention as it enables the fabrication of compact, high-performance, and tunable photonic devices. However, extensive investigation of metasurfaces was limited to a narrow THz range or manipulating a single mode of electromagnetic waves, absorption, reflection, or transmission, without achieving multi-band or broadband switching. This capability constrains metasurface adaptability in modern and reconfigurable systems.

View Article and Find Full Text PDF

Solution-processed PbSe colloidal quantum dots (CQDs) are promising candidates for building high-performance infrared photodetectors due to their widely tunable band gaps and high carrier mobility. However, the development of PbSe CQD photodetectors has been hampered by their poor electronic properties. In this work, a monomer-assisted ligand exchange (MLE) strategy was developed that leads to PbSe CQDs with improved electronic properties including increased carrier mobility, extended carrier lifetime, and enhanced electronic uniformity.

View Article and Find Full Text PDF

Polyurea-Integrated FeSnC/Sn/CNF Hybrid for Enhanced Broadband Microwave Absorption.

Small

August 2025

National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.

Effective mitigation of electromagnetic microwave (EMW) pollution requires the development of lightweight, broadband, and high-performance microwave absorbing materials. In this work, a novel FeSnC/Sn/CNF composite is synthesized via a combination of hydrothermal synthesis, electrospinning, and high-temperature carbonization. The optimal sample (FSC3) achieved a minimum reflection loss (RL) of -28.

View Article and Find Full Text PDF