98%
921
2 minutes
20
Vessel length is an important functional trait for plant hydraulics, because it determines the ratio of flow resistances posed by lumen and pit membranes and hence controls xylem hydraulic efficiency. The most commonly applied methods to estimate vessel lengths are based on the injection of silicon or paint into cut-off stem segments. The number of stained vessels in a series of cross-sections in increasing distance from the injection point is then counted. The resulting infusion profiles are used to estimate the vessel length distribution using one of several statistical algorithms. However, the basis of these algorithms has not been systematically analysed using probability theory. We derive a general mathematical expression for the expected shape of the infusion profile for a given vessel length distribution, provide analytic solutions for five candidate distributions (exponential, Erlang(2), gamma, Weibull, and log-normal), and present maximum likelihood estimators for the parameters of these distributions including implementations in R based on two potential sampling schemes (counting all injected vessels or counting the injected and empty vessels in a random subset of each cross-section). We then explore the performance of these estimators relative to other methods with Monte Carlo experiments. Our analysis demonstrates that most published methods estimate the conditional length distribution of vessels that cross an injection point, which is a size-biased version of the overall length distribution in the stem. We show the mathematical relationship between these distributions and provide methods to estimate either of them. According to our simulation experiments, vessel length distribution was best described by the more flexible models, especially the Weibull distribution. In simulations, the estimators were able to recover the parameters of the vessel length distribution if its functional form was known, achieving an overlap of 90% or more between the true and predicted length distribution when counting no more than 500 injected vessels in 10 cross-sections. This sample size nowadays can easily be reached with the help of automated image analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2018.07.036 | DOI Listing |
PLoS One
September 2025
Mechanical and Nuclear Engineering Department, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.
View Article and Find Full Text PDFAnn Afr Med
September 2025
Department of Medicine, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
Background: A comprehensive knowledge of renal vasculature is essential to diagnose and carry out safe clinical interventions accurately. Anatomic variations in renal vessels can present procedural challenges in surgeries such as nephrectomy, transplants, and endovascular interventions.
Methods: In the present retrospective study, we analyzed the distribution patterns of the renal vascular variants and measurements of length and diameter in computed tomography angiographies (CTAs).
Mol Biol Rep
September 2025
ICAR-Central Institute of Fisheries Education, Versova, Mumbai, 400061, India.
Background: Labeo fimbriatus (Bloch, 1795) is a medium-sized South Asian minor carp with ecological significance and emerging aquaculture potential, particularly in polyculture systems with Indian major carps. Despite its wide distribution, it remains underrepresented in phylogenetic studies, and limited genomic resources are available. Here, we report the complete mitochondrial genome sequence of L.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Masaryk University, Faculty of Science, Department of Chemistry, Kotlářská 2, Brno, 611 37, Czech Republic.
Structural and magnetic properties of ultra-small tetrahedron-shaped iron oxide nanoparticles were investigated using density functional theory. Tetrahedral and truncated tetrahedral models were considered in both non-functionalized form and with surfaces passivated by pseudo-hydrogen atoms. The focus on these two morphologies reflects their experimental relevance at this size scale and the feasibility of performing fully relaxed, atomistically resolved first-principles simulations.
View Article and Find Full Text PDFNanoImpact
September 2025
Institute of Pomology, Jilin Academy of Agricultural Sciences, Changchun 136100, China. Electronic address:
Microplastics (MPs) pollution threatens aquatic and terrestrial ecosystems. Herein, we assessed the uptake of MPs in seedling roots of three crop species exposed to small (0.2 μm) and large (1.
View Article and Find Full Text PDF