Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, with sulfuric acid as a catalyst and acetic acid as solution at the temperature of 120 ℃ and refluxing period for 24 hours, a sterically hindered bulky 9,9-diarylfluorene intermediate of [9-(4-anilino)-9-phenyl-fluorene] had been successfully designed and synthesized with Friedel-Crafts reaction. The molecular structure of this compound was characterized in detail with nuclear magnetic resonance hydrogen spectrum, mass spectrometry, infrared ray, and so on. Nuclear magnetic resonance hydrogen spectrum and infrared ray spectrum of the compound indicated that the characteristic functional group amino of the compound at 6.55 ppm, 3 481 and 3 385 cm-1, respectively. UV-visible and fluorescence spectra properties of 9-(4-anilino)-9-phenyl-fluorene were characterized and discussed preliminarily, respectively. The research results show that the 9-(4-anilino)-9-phenyl-fluorene with bulky steric hindrance effects has four main absorption peaks with wavelength of 243, 257, 298 and 311 nm in dichloromethane solution, respectively. Moreover, with the excitation wavelength of 308 nm, an emission spectrum curve was obtained with wavelength of 300~500 nm, which has the maximum emission peak of 328 nm with a slim peak at about 405 nm and a long tail to 500 nm. The long tail was probably attributed to the interaction of intermolecular hydrogen bonding from aniline. The appropriate scope of fluorescence emission (300~500 nm) make the compound overlap with the absorption spectra of the classic blue material Bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium (Ⅲ) (FIrpic) (300~500 nm). It is possible to obtain excellent host materials through proper molecular tailoring and prepare well for high performance light-emitting device. In order to further understand the photoelectric properties of the compound, we used acetonitrile as solvent and tetrabutylammonium hexafluorophosphate as electrolyte, and the electrochemical properties of the compound was characterized with cyclic voltammetry measurements.The onset of the reduction and oxidation potential of the compound are -0.759 and 0.898 V, and the corresponding HOMO and LUMO energy levels are -5.38 and -3.72 eV, which wolud be beneficial to holes and electrons injection/transportation and further modified to be excellent host materials. All of these data would provide a useful reference for further fabrication of organic semiconductor luminescent device with high performance.

Download full-text PDF

Source

Publication Analysis

Top Keywords

photoelectric properties
8
bulky steric
8
steric hindrance
8
compound characterized
8
nuclear magnetic
8
magnetic resonance
8
resonance hydrogen
8
hydrogen spectrum
8
infrared ray
8
long tail
8

Similar Publications

Mechanisms of Enhanced Efficiency and Stability in Perovskite Luminescence via Rb Interstitial Doping.

J Phys Chem Lett

September 2025

Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.

View Article and Find Full Text PDF

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Regulating the electronic structure by doping can promote photoluminescence emission of low-dimensional metal halides for developing white-light-emitting devices. Here, 0D metal halides RbBiCl have achieved a transition from nonluminescence to effective self-trapped excitons (STEs) emission after Sb ion doping at room temperature. The femtosecond transient absorption spectrum reveals the nonradiative recombination was suppressed, whose lifetimes change from 93.

View Article and Find Full Text PDF

Giant and Tunable Optical Nonlinearity via Electrochemical Control of the Tellurium-Electrolyte Interface.

Nano Lett

September 2025

Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology School of Physics Northwest University, Xi'an 710069, China.

The semiconductor-electrolyte interface with strong electrical tunability offers a platform for tuning nonlinear optical (NLO) processes and achieving giant optical nonlinearities. However, such a demonstration and fundamental mechanistic understanding of electrochemically tuned NLO properties have not been reported. Here, we developed an electrochemical Z-scan system to characterize the evolution of NLO responses in tellurium nanorod films under bias voltage.

View Article and Find Full Text PDF

The emergence of amorphous materials approaching the single-layer limit.

Chem Sci

September 2025

State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China

Amorphous materials with thickness thinned down to the single-layer limit have attracted increasing interest due to their well-defined disorder and emerging unique properties, such as disorder-dominated electronic states, high-density unsaturated coordination, enhanced quantum confinement, These features could enable innovative applications in electronics, photoelectronics, catalysis, and beyond. In this perspective, we provide an overview of recent advances in two-dimensional (2D) amorphous materials approaching the single-layer limit. We first introduce newly-developed key structural descriptors for these systems, including local bonding, topological disorder, and chemical composition.

View Article and Find Full Text PDF