Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2017.10.0390DOI Listing

Publication Analysis

Top Keywords

rice fields
16
sacramento valley
8
fields
5
methylmercury dynamics
4
dynamics upper
4
upper sacramento
4
rice
4
valley rice
4
fields low
4
low background
4

Similar Publications

Motivation: The advent of next-generation sequencing-based spatially resolved transcriptomics (SRT) techniques has reshaped genomic studies by enabling high-throughput gene expression profiling while preserving spatial and morphological context. Understanding gene functions and interactions in different spatial domains is crucial, as it can enhance our comprehension of biological mechanisms, such as cancer-immune interactions and cell differentiation in various regions. It is necessary to cluster tissue regions into distinct spatial domains and identify discriminating genes that elucidate the clustering result, referred to as spatial domain-specific discriminating genes (DGs).

View Article and Find Full Text PDF

Cadmium (Cd) pollution in rice agroecosystems has become a pressing worldwide environmental challenge. Straw return leads to Cd re-entering the soil, yet the impact of straw removal (SR) on Cd mobility and bioavailability within this system remains unclear. We implemented a four-season field study to evaluate how different SR intensities (NSR: no rice straw was removed; HSR: half of the rice straw was removed; TSR: all the rice straw was removed) influence Cd availability in this system.

View Article and Find Full Text PDF

Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.

View Article and Find Full Text PDF

Evaluation of the impact of sugarcane trash in situ incorporation on soil health in North Haryana.

Environ Monit Assess

September 2025

Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.

India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.

View Article and Find Full Text PDF

Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.

View Article and Find Full Text PDF