Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Early in 2014 several forecast systems were suggesting a strong 1997/98-like El Niño event for the following northern hemisphere winter 2014/15. However the eventual outcome was a modest warming. In contrast, winter 2015/16 saw one of the strongest El Niño events on record. Here we assess the ability of two operational seasonal prediction systems to forecast these events, using the forecast ensembles to try to understand the reasons underlying the very different development and outcomes for these two years. We test three hypotheses. First we find that the continuation of neutral ENSO conditions in 2014 is associated with the maintenance of the observed cold southeast Pacific sea surface temperature anomaly; secondly that, in our forecasts at least, warm west equatorial Pacific sea surface temperature anomalies do not appear to hinder El Niño development; and finally that stronger westerly wind burst activity in 2015 compared to 2014 is a key difference between the two years. Interestingly, in these years at least, this interannual variability in wind burst activity is predictable. ECMWF System 4 tends to produce more westerly wind bursts than Met Office GloSea5 and this likely contributes to the larger SST anomalies predicted in this model in both years.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048137PMC
http://dx.doi.org/10.1038/s41598-018-29130-1DOI Listing

Publication Analysis

Top Keywords

pacific sea
8
sea surface
8
surface temperature
8
westerly wind
8
wind burst
8
burst activity
8
predicting niño
4
0
4
niño 2014
4
2014 2015
4

Similar Publications

Hypoxia and elevated seawater temperatures are increasingly prevalent stressors in marine ecosystems, significantly impacting the physiology of marine organisms. This study investigates the transcriptomic and proteomic responses of Pacific oyster (Crassostrea gigas) hemocytes to hypoxia alone (water temperature, 23 °C; dissolved oxygen [DO] level, 1 mg O₂/L) and combined hypoxia with high temperature (water temperature, 28 °C; DO level, 1 mg O₂/L) over a 10-day exposure period. Using RNA sequencing and liquid chromatography-mass spectrometry, we identified distinct molecular responses to these stressors.

View Article and Find Full Text PDF

Otolith chemical approaches are widely used to inform fisheries management, supporting the identification of population structure, connectivity, and natal origins. Chemical transects combined with fish age and growth data can reveal individual life histories, highlighting movement patterns and environmental influences within populations. Scaling these distinct variations to the population-level through novel chronological approaches could further boost our understanding of long-term physiological and environmental processes, and their interactions across regions and species.

View Article and Find Full Text PDF

Mercury (Hg) emissions from both natural and anthropogenic sources influence Hg levels in the biota of a given region. Tropical regions, such as those in the Southwestern Atlantic (SWA) and the Eastern Pacific (EP) are particularly interesting due to differences in natural Hg sources, which may impact Hg levels in marine organisms, including sea turtles. In the EP, the Circum-Pacific Belt is a significant natural source of Hg, while natural Hg sources in the SWA are negligible.

View Article and Find Full Text PDF

Starvation Influences the Microbiota in the Stomach of the Corallivorous Crown-of-Thorns Starfish.

Biology (Basel)

August 2025

CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.

The crown-of-thorns starfish (CoTS, spp.), is responsible for a considerable amount of coral loss in the tropical Indo-Pacific region. After decimating coral populations through predation, it is expected that CoTS will face food scarcity before coral recovery.

View Article and Find Full Text PDF

Effects of Interspecific Competition on Habitat Shifts of (Temminck et Schlegel, 1846) and (Houttuyn, 1782) in the Northwest Pacific.

Biology (Basel)

August 2025

Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, P.R. China, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China.

As economically important sympatric species in the Northwest Pacific, the Japanese sardine () and Chub mackerel () exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of and from the Northwest Pacific, collected from June to November between 2017 and 2020.

View Article and Find Full Text PDF