Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a common-path surface plasmon interferometer with radial polarization. We show how the V(z) effect, the output of the microscope versus defocus z, can be derived utilizing a radially polarized illumination and a virtual annulus. The measurement of the V(z) effect gives a strong signature of the surface plasmon propagation, which is functionally related to the material properties. We discuss the advantages of using radial polarization compared to linear polarization.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.43.003245DOI Listing

Publication Analysis

Top Keywords

surface plasmon
12
radial polarization
12
common-path surface
8
plasmon interferometer
8
interferometer radial
8
polarization
4
polarization common-path
4
polarization output
4
output microscope
4
microscope versus
4

Similar Publications

Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.

View Article and Find Full Text PDF

The efficient and sustainable remediation of contaminated water calls for catalytic systems that must clean broadly, endure widely, and last repeatedly. In this regard, we report the development of sulfonate-functionalized core-shell hydrogel beads embedded with synthesized gold nanoparticles (AuNPs) that exhibit intrinsic oxidase-like activity without requiring external light or chemical oxidants. The sulfonate ligands modulate the surface electronic environment of the AuNPs, facilitating singlet oxygen generation via a nonplasmonic, radiationless mechanism.

View Article and Find Full Text PDF

Targeting thrombin to screen safe thrombin inhibitors from natural plants and animals is a critical direction in anticoagulant drug development. This study aimed to screen thrombin inhibitors from the nonbloodsucking leech Whitmania pigra (WP) and elucidate the mechanism of anticoagulation through a "computation-guided experimentation" strategy. A peptide library was constructed from WP hydrolysates, and virtual screening was performed using molecular docking and dynamics simulations.

View Article and Find Full Text PDF

Dynamic dual-mode terahertz device with nonvolatile switching for integrated on-chip and free-space applications.

Microsyst Nanoeng

September 2025

Center for Terahertz Waves, College of Precision Instrument and Optoelectronics Engineering, and the Key Laboratory of Optoelectronics Information and Technology (Ministry of Education), Tianjin University, Tianjin, 300072, China.

Terahertz communication systems demand versatile devices capable of simultaneously controlling propagating waves and surface plasmon polaritons (SPPs) in far-field (FF) and near-field (NF) channels, yet existing solutions are constrained by volatile operation, single-function limitations, and the inability to integrate NF and FF functionalities. Here, we present a nonvolatile reconfigurable terahertz metasurface platform leveraging the phase-change material GeSbTe(GST) to achieve on-demand dual-channel modulation-a first in the terahertz regime. By exploiting the stark conductivity contrast of GST between amorphous and crystalline states, our design enables energy-efficient switching between NF-SPP manipulation and FF-wavefront engineering without requiring continuous power input.

View Article and Find Full Text PDF

Wearable sensors for animal health and wellness monitoring.

Prog Mol Biol Transl Sci

September 2025

Nanobiology and Nanozymology Research Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Hyderabad, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India. Electronic address:

Biosensors are rapidly emerging as a key tool in animal health management, therefore, gaining a significant recognition in the global market. Wearable sensors, integrated with advanced biosensing technologies, provide highly specialized devices for measuring both individual and multiple physiological parameters of animals, as well as monitoring their environment. These sensors are not only precise and sensitive but also reliable, user-friendly, and capable of accelerating the monitoring process.

View Article and Find Full Text PDF