Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil.

Sci Total Environ

Norwegian Geotechnical Institute (NGI), Oslo, Norway; Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life sciences (NMBU), Ås, Norway. Electronic address:

Published: June 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We studied the role of biochar in improving soil fertility for maize production. The effects of biochar on the alleviation of three potential physical-chemical soil limitations for maize growth were investigated, i.e. water stress, nutrient stress and acid stress. Experiments involved soils with two dosages of biochar (0.5% and 2% w:w), as well as ones without biochar, in combination with four different dosages of NPK fertilizer, water and lime. Biochar was produced from the invasive shrubby weed Eupatorium adenophorum using flame curtain kilns. This is the first study to alleviate one by one the water stress, nutrient stress and acid stress in order to investigate the mechanisms of biochar effects on soil fertility. Biochar addition increased soil moisture, potassium (K) and plant available phosphorous (P-AL), which all showed significant positive relationship (p<0.001) with above ground biomass of maize. However, biochar was much more effective at abundant soil watering (+311% biomass) than at water-starved conditions (+67% biomass), indicating that biochar did increase soil moisture, but that this was not the main reason for the positive biomass growth effects. Biochar addition did have a stronger effect under nutrient-stressed conditions (+363%) than under abundant nutrient application (+132%). Biochar amendment increased soil pH, but liming and pH had no effect on maize dry biomass, so acidity stress alleviation was not the mechanism of biochar effects on soil fertility. In conclusion, the alleviation of nutrient stress was the probably the main factor contributing to the increased maize biomass production upon biochar addition to this moderately acidic Inceptisol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.01.022DOI Listing

Publication Analysis

Top Keywords

nutrient stress
12
biochar
8
maize growth
8
soil fertility
8
water stress
8
stress nutrient
8
stress acid
8
acid stress
8
stress
7
soil
5

Similar Publications

Genome-wide identification and functional characterization of rapid alkalinization factor 6 as a key peptide regulator of abiotic stress tolerance in Tartary buckwheat.

Plant Sci

September 2025

Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industrialization, Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, China. Electronic address:

Rapid alkalinization factors (RALFs) are cysteine-rich signaling peptides in plants that play critical roles in development, immune regulation, and responses to abiotic stress. Despite their importance, the functional characterization of RALF family members in Tartary buckwheat (Fagopyrum tataricum), a nutrient-rich crop known for its remarkable resilience to multiple stresses, remains largely unexplored. In this study, we conducted a comprehensive genome-wide analysis to identify and characterize the FtRALF gene family in Tartary buckwheat, examining their phylogenetic relationships, gene structures, and duplication events.

View Article and Find Full Text PDF

The transmission of mosquito-borne diseases is intrinsically linked to mosquito blood-feeding behavior, yet the metabolic adaptations of the midgut microbiota in response to blood meals remain poorly understood. This study aimed to characterize the structural and functional changes in the midgut microbiota of Aedes albopictus following blood feeding and to elucidate their potential physiological implications. In this study, we employed 16S rRNA gene amplification coupled with PacBio Sequel II sequencing to characterize shifts in the midgut microbiota of Aedes albopictus before and after blood feeding on mice.

View Article and Find Full Text PDF

Genetic predisposition, inflammation, and oxidative stress are known contributors to the development of Hashimoto's thyroiditis (HT). While genetic factors are non-modifiable, lifestyle, nutritional factors and oxidative stress may represent areas for intervention. This study aimed to assess biochemical markers of oxidative stress and evaluate dietary intake in women with newly diagnosed HT, identified through population-based screening.

View Article and Find Full Text PDF

Threshold-based analysis of eutrophication dynamics in a semi-enclosed bay: The dominant role of dissolved inorganic nitrogen in Masan Bay, South Korea (2010-2015).

Mar Pollut Bull

September 2025

Ecological Risk Research Department, Korea Institute of Ocean Science & Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, KIOST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea. Electronic address:

Eutrophication in semi-enclosed coastal systems remains a persistent concern due to restricted water circulation and continuous nutrient inputs. To better characterize nutrient-driven water quality degradation, we applied a threshold-based analysis to seasonal monitoring data collected from Masan Bay, South Korea, between 2010 and 2015. Eutrophication status was assessed using a composite Eutrophication Index (EI) integrating chemical oxygen demand (COD), dissolved inorganic nitrogen (DIN), and dissolved inorganic phosphorus (DIP).

View Article and Find Full Text PDF

Plants being rooted entities, are highly susceptible to diverse abiotic stresses that impair their growth and development. To encounter these adverse conditions, plants have developed several morpho-physiological and biochemical strategies. In particular, nutrients such as nitrogen, phosphorous, potassium, sulfur and iron-play an important role in enhancing stress resilience by promoting growth and regulating key signaling pathways.

View Article and Find Full Text PDF