98%
921
2 minutes
20
Synthetic Biologists are increasingly interested in the idea of using synthetic feedback control circuits for the mitigation of perturbations to gene regulatory networks that may arise due to disease and/or environmental disturbances. Models employing Michaelis-Menten kinetics with Hill-type nonlinearities are typically used to represent the dynamics of gene regulatory networks. Here, we identify some fundamental problems with such models from the point of view of control system design, and argue that an alternative formalism, based on so-called S-System models, is more suitable. Using tools from system identification, we show how to build S-System models that capture the key dynamics of an example gene regulatory network, and design a genetic feedback controller with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be approximated by a linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full nonlinear S-System model of the network show that the synthetic control circuit is able to mitigate the effect of external perturbations. Our study is the first to highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene regulatory networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBB.2017.2771775 | DOI Listing |
Anim Reprod Sci
September 2025
Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.
Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.
View Article and Find Full Text PDFBlood Adv
September 2025
BC Cancer, Vancouver, British Columbia, Canada.
Classical Hodgkin Lymphoma (CHL) is characterized by a complex tumor microenvironment (TME) that supports disease progression. While immune cell recruitment by Hodgkin and Reed-Sternberg (HRS) cells is well-documented, the role of non-malignant B cells in relapse remains unclear. Using single-cell RNA sequencing (scRNA-seq) on paired diagnostic and relapsed CHL samples, we identified distinct shifts in B-cell populations, particularly an enrichment of naïve B cells and a reduction of memory B cells in early-relapse compared to late-relapse and newly diagnosed CHL.
View Article and Find Full Text PDFPlant J
September 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
Genome imbalance, resulting from varying the dosage of individual chromosomes (aneuploidy), has a more detrimental effect than changes in complete sets of chromosomes (haploidy/polyploidy). This imbalance is likely due to disruptions in stoichiometry and interactions among macromolecular assemblies. Previous research has shown that aneuploidy causes global modulation of protein-coding genes (PCGs), microRNAs, and transposable elements (TEs), affecting both the varied chromosome (cis-located) and unvaried genome regions (trans-located) across various taxa.
View Article and Find Full Text PDFAm J Reprod Immunol
September 2025
Department of Laboratory Animal Science, Kunming Medical University, Kunming, China.
Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.
Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.
Sci Signal
September 2025
Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA.
Replication of HIV-1 requires the coordinated action of host and viral transcription factors, most critically the viral transactivator Tat and the host nuclear factor κB (NF-κB). This activity is disrupted in infected cells that are cultured with extracellular vesicles (EVs) present in human semen, suggesting that they contain factors that could inform the development of new therapeutics. Here, we explored the contents of semen-derived EVs (SEVs) from uninfected donors and individuals with HIV-1 and identified host proteins that interacted with HIV Tat and the NF-κB subunit p65.
View Article and Find Full Text PDF