Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Unlabelled: Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open reading frame encoded a polypeptide of 467 amino acid residues. The deduced amino acid sequence indicated that SdChiA consisted of two N-terminal chitin-binding domains and a C-terminal plant class V chitinase catalytic domain, belonging to the carbohydrate-binding module family 18 (CBM18) and glycoside hydrolase family 18 (GH18), respectively. SdChiA had chitin-binding ability. The time-dependent cleavage pattern of (GlcNAc) by SdChiA showed that SdChiA specifically recognizes the β-anomer in the + 2 subsite of the substrate (GlcNAc) and cleaves the glycoside bond at the center of the substrate. This is the first report of the occurrence of a family 18 chitinase containing CBM18 chitin-binding domains.

Abbreviations: AtChiC: Arabidopsis thaliana class V chitinase; CBB: Coomassie brilliant blue R250; CBM: carbohydrate binding module family; CrChi-A: Cycas revolute chitinase-A; EaChiA: Equisetum arvense chitinase-A; GH: glycoside hydrolase family, GlxChi-B: gazyumaru latex chitinase-B; GlcNAc: N-acetylglucosamine; HPLC: high performance liquid chromatography; LysM; lysin motif; MtNFH1: Medicago truncatula ecotypes R108-1 chitinase; NCBI: national center for biotechnology information; NF: nodulation factor; NtChiV: Nicotiana tabacum class V chitinase; PCR: polymerase chain reaction; PrChi-A: Pteris ryukyuensis chitinase-A; RACE: rapid amplification of cDNA ends; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SdChiA: Selaginella doederleinii chitinase-A.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09168451.2018.1491285DOI Listing

Publication Analysis

Top Keywords

selaginella doederleinii
12
class chitinase
12
lycophyte selaginella
8
rapid amplification
8
amplification cdna
8
cdna ends
8
polymerase chain
8
chain reaction
8
amino acid
8
module family
8

Similar Publications

The multi-target mechanism of action of Selaginella doederleinii Hieron in the treatment of nasopharyngeal carcinoma: a network pharmacology and multi-omics analysis.

Sci Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.

Nasopharyngeal carcinoma (NPC) presents significant treatment challenges due to its complex etiology and late-stage diagnosis. The traditional Chinese medicine Selaginella doederleinii Hieron (S. doederleinii) has shown potentiality in NPC treatment due to its multi-target, multi-pathway anti-cancer mechanisms.

View Article and Find Full Text PDF

In this study, the extraction, purification and metabolic enzyme inhibition potential of were investigated. In order to extract the total biflavonoids from (SDTBs), the optimum extraction process was obtained by optimizing the ultrasonic extraction parameters using response-surface methodology. This resulted in a total biflavonoid content of 22.

View Article and Find Full Text PDF

Epithelial-mesenchymal transition (EMT) and its reversal process are important potential mechanisms in the development of HCC. Selaginella doederleinii Hieron is widely used in Traditional Chinese Medicine for the treatment of various tumours and Amentoflavone is its main active ingredient. This study investigates the mechanism of action of Amentoflavone on EMT in hepatocellular carcinoma from the perspective of bioinformatics and network pharmacology.

View Article and Find Full Text PDF

In this study, the therapeutic effect and possible mechanism of the total biflavonoid extract of Hieron (SDTBE) against cervical cancer were originally investigated in vitro and in vivo. First, the inhibition of SDTBE on proliferation of cervical cancer HeLa cells was evaluated, followed by morphological observation with AO/EB staining, Annexin V/PI assay, and autophagic flux monitoring to evaluate the possible effect of SDTBE on cell apoptosis and autophagy. Cell cycle, as well as mitochondrial membrane potential (Δ), was detected with flow cytometry.

View Article and Find Full Text PDF