[Effects of PSB06 on Pepper Rhizosphere Microbial Community Structure].

Huan Jing Ke Xue

Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Institute of Hunan Plant Protection, Hunan Academy of Agricultural Science, Changsha 410125, China.

Published: February 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The use of biological pesticide can greatly reduce the soil pollution in the environment. Exploring the effect of biological pesticide on community diversity and distribution of pathogenic bacteria will provide theoretic basis for subsequent researches on biological pesticide micro-ecological control. In order to explore the microbial ecological mechanism of pepper phytophthora blight, this research compared the difference of microbial diversity between rhizosphere soil of infected and healthy plants, and the effects of PSB06 on microbial diversities of plant rhizosphere soil were investigated using Illumina MiSeq sequencing technology. The results showed that there was less difference in the microbial diversity from the same soil between the seventh day and the fourteenth day. The microbial diversity of rhizosphere soil of healthy plants was higher than that of rhizosphere soil of infected plants. The soil sprayed with PSB06 exhibited the highest diversity. Moreover, the abundance of Actinomycetes in the rhizosphere soil of healthy plants was higher than that of infected plants, and the highest abundance of Actinomycetes was observed in the soil sprayed with PSB06. The microbial diversity between rhizosphere soil of infected and healthy plants was significantly different. Spraying PSB06 could significantly alter the microbial community structure of the soil. It could also increase the diversity of microorganism and the abundance of Actinomycetes in the soil.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201606059DOI Listing

Publication Analysis

Top Keywords

rhizosphere soil
24
microbial diversity
16
healthy plants
16
biological pesticide
12
soil
12
diversity rhizosphere
12
soil infected
12
abundance actinomycetes
12
microbial
8
microbial community
8

Similar Publications

While PGPB have historically been applied in agriculture, their formal recognition in the last century has driven intensive research into their role as sustainable tools for improving crop yield and stress tolerance. As they are primarily sourced from wild or native environments, the widespread enthusiasm has led to heightened expectations surrounding their potential, often based on the assumption that biological solutions are inherently safer and more effective than synthetic inputs. However, despite their popularity, increasing reports of inconsistent or limited performance under real-world, field conditions have raised critical questions about their credibility as biofertilizers and biocontrol agents.

View Article and Find Full Text PDF

From Barren Rock to Thriving Life: How Nitrogen Fuels Microbial Carbon Fixation in Deglaciated Landscapes.

Environ Sci Technol

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.

Rapidly expanding nascent ecosystems at glacier forefields under climate warming dramatically enhance the terrestrial carbon (C) sink. Microbial C fixation and degradation, closely implicated in nitrogen (N) transformation and plant-soil-microbe interactions, significantly regulate soil C accumulation. However, how shifts in microbial functional potential impact soil C sequestration during vegetation succession remains unclear.

View Article and Find Full Text PDF

Rice Root Iron Plaque as a Mediator to Stimulate Methanotrophic Nitrogen Fixation.

Environ Sci Technol

September 2025

Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.

Iron plaque (IP) on rice root surfaces has been extensively documented as a natural barrier that effectively reduces contaminant bioavailability and accumulation. However, its regulatory mechanisms in rhizospheric methane oxidation and biological nitrogen fixation (BNF) remain elusive. This study reveals a previously unrecognized function of IP: mediating methanotrophic nitrogen fixation through coupled aerobic methane oxidation and IP reduction (Fe-MOX).

View Article and Find Full Text PDF

As the world's largest producer of kiwifruit, China faces significant yield and quality losses due to the widespread occurrence of kiwifruit root rot. To explore alternative biological control strategies for kiwifruit root rot, this study isolated 11 fungal isolates from diseased kiwifruit roots and identified as the primary pathogen. Additionally, a biocontrol strain, C3, was isolated from the rhizosphere of healthy kiwifruit and shown to significantly inhibit pathogen growth.

View Article and Find Full Text PDF

The increasing presence of nanoplastics (NPs) in terrestrial environments raises concerns about their bioavailability and potential impacts on crops. This study investigates the uptake and translocation of environmentally relevant polystyrene nanoplastics (eNPs-PS) in Hordeum vulgare L. via soil.

View Article and Find Full Text PDF