Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Second harmonic generation (SHG) spectroscopy has been applied to probe the fused silica/water interface at pH 7 and the uncharged 11¯02 sapphire/water interface at pH 5.2 in contact with aqueous solutions of NaCl, NaBr, NaI, KCl, RbCl, and CsCl as low as several 10 μM. For ionic strengths up to about 0.1 mM, the SHG responses were observed to increase, reversibly for all salts surveyed, when compared to the condition of zero salt added. Further increases in the salt concentration led to monotonic decreases in the SHG response. The SHG increases followed by decreases are found to be consistent with recent reports of phase interference and phase matching in nonlinear optics. By varying the relative permittivity employed in common mean field theories used to describe electrical double layers and by comparing our results to available literature data, we find that models recapitulating the experimental observations are the ones in which (1) the relative permittivity of the diffuse layer is that of bulk water, with other possible values as low as 30, (2) the surface charge density varies with salt concentration, and (3) the charge in the Stern layer or its thickness varies with salt concentration. We also note that the experimental data exhibit sensitivity depending on whether the salt concentration is increased from low to high values or decreased from high to low values, which, however, is not borne out in the fits, at least within the current uncertainties associated with the model point estimates.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5011977DOI Listing

Publication Analysis

Top Keywords

salt concentration
16
relative permittivity
12
electrical double
8
nonlinear optics
8
varies salt
8
salt
5
permittivity electrical
4
double layer
4
layer nonlinear
4
optics second
4

Similar Publications

Trifluoromethylborylation of Unactivated Alkenes via an Electron Donor-Acceptor (EDA) Complex.

Org Lett

September 2025

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States.

This communication describes a straightforward method for the trifluoromethylborylation of unactivated alkenes. The reaction proceeds through the formation of an electron donor-acceptor (EDA) complex between a trifluoromethylthiophenium salt and bis(catechol)diboron under broad-spectrum white-light irradiation. Due to the mild reaction conditions, the trifluoromethylborylation tolerates a wide range of functional groups, including esters, acids, alcohols, epoxides, and a variety of heterocycles.

View Article and Find Full Text PDF

Inspired by the rigid exoskeleton and elastic inner tissues of crustaceans, a bilayer gel integrating high-strength rigidity and soft cushioning with high interfacial adhesion (1060 ± 40 J m ) is developed via a stepwise solid-liquid phase crosslinking strategy. Herein, a prefrozen high-concentration polyvinyl alcohol (PVA) solution forms a solid-state structural framework, while a subsequently cast low-concentration PVA solution generates a flexible layer. Partial thawing of the frozen gel during casting triggers molecular chain interpenetration at the interface, synergistically enhanced by controlled molecular penetration, freeze-thaw cycles, and salt-induced crystallization.

View Article and Find Full Text PDF

Determination of alcohol concentration in a single drop blood obtained via fingertip using gas chromatography/mass spectrometry coupled with solid-phase microextraction.

Leg Med (Tokyo)

September 2025

Department of Analytical Chemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, 2-4-41, Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.

This study investigated headspace solid-phase microextraction (HS-SPME)-gas chromatography (GS)/mass spectrometry as a low-complexity method for accurate measurement of blood alcohol concentration (BAC) changes in humans over time following alcohol consumption. The aim was to develop an analytical method that would require as small blood samples as possible-smaller than that required for the conventional method-thereby reducing the burden on the subject. Polyethylene glycol (PEG) was used as the fiber material for SPME, and a DB-WAX capillary column was used for GC.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation technology represents an innovative and high-efficiency desalination approach. This technology plays a crucial role in relieving the shortage of worldwide freshwater resources. However, the interfacial evaporator still faces great challenges in terms of high efficiency and ensuring long-term evaporation stability, among other aspects.

View Article and Find Full Text PDF

Hydrogen Bond Disruption-Induced Ion Rearrangement in Acetonitrile-Water-Sodium Sulfate Solutions.

J Phys Chem B

September 2025

Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, China.

Understanding hydrogen bonding and ion-specific interactions in water, sodium sulfate (NaSO), and acetonitrile (ACN) systems remains challenging due to their complex, dynamic nature. Here, Raman spectroscopy is employed to probe hydrogen bonding networks and ion reorganization in NaSO aqueous solutions with different ACN concentrations. The results indicate that, at low ACN concentrations in the ternary solutions, hydrogen bonding between ACN and water molecules disrupts the original hydration structure of the ions, resulting in the formation of small ion clusters via electrostatic interactions.

View Article and Find Full Text PDF