98%
921
2 minutes
20
A high quality of activated-carbon electrode materials is of great importance for improving the electrochemical performance of desalination in membrane capacitive deionization. In this study, porous activated carbon was prepared by pyrolytic carbonization and chemical activation of lignocellulosic loofa sponge (Luffa cylindrica, LS) to act as a carbonaceous electrode. After activation, a hierarchically porous structure formed, characterized by the generation of micro-/mesopores on the channel walls. The total specific surface area and pore volume of the activated carbon material rose as the alkali/char ratio increased. The LS-based carbon electrode LSCK14, referring to the activation product produced with a KOH/char ratio of 4, displayed excellent electrochemical behavior, characterized by a remarkable specific capacitance of 93.0 F g at 5 mV s in 1 M NaCl solution, as well as extraordinary reversibility for capacitive charge storage. Moreover, the electrosorption capacity was investigated in batch-mode membrane capacitive deionization at 1.0 V while treating a 10 mM NaCl electrolyte. As demonstrated, the LSCK14 activated carbon electrode presented a superior electrosorption capacity of 22.5 mg g. The improved capacitor characteristics and high electrosorptive performance of this material can be attributed to its unique porous characteristics (high surface area, micrometer-scale channels and both meso- and micropores). Consequently, activated carbons derived from resource-recovered LS, which combine a multi-channeled structure, mesopores and micropores, were demonstrated to be a promising electrode material for electrochemical water desalination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.05.174 | DOI Listing |
Environ Monit Assess
September 2025
College of Ecological and Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.
View Article and Find Full Text PDFJ Environ Manage
September 2025
National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Ch
The anaerobic ammonia oxidation (anammox) process has attracted considerable interest for its advantages in low energy requirements, reduced sludge output, and eliminating the need for external carbon sources. However, its application is constrained by the long generation time, slow growth, and challenges in enriching anammox bacteria. Studies indicate that carbon material addition significantly accelerates anammox bacteria proliferation, enhances nitrogen removal efficiency, and improves anammox microbial activity.
View Article and Find Full Text PDFJ Contam Hydrol
September 2025
School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
Biological denitrification is an essential method for sewage treatment, though its efficiency is often constrained by low temperatures and insufficient organic carbon sources. In this study, a novel cold-tolerant heterotrophic nitrification-aerobic denitrification bacterium, Pseudomonas fluorescens sp. Z03, was isolated from activated sludge, and its denitrification performance was evaluated.
View Article and Find Full Text PDFRSC Adv
September 2025
Department of Chemical Engineering and Green Technology, Institute of Chemical Technology (ICT) Mumbai Maharashtra 400019 India
The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.
View Article and Find Full Text PDFNatl Sci Rev
September 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China.
Chimeric antigen receptor T (CAR-T)-cell therapy is a promising resolution for solid tumors, but its corresponding clinical translation has been hindered by unsatisfactory therapeutic potency and severe cytokine release syndrome. Herein, tetracycline (Tet)-On inducible human epidermal growth factor receptor 1 (HER1)-targeted CAR-T (Tet-HER1-CAR-T) cells were engineered to enable spatially selective activation at tumor sites by doxycycline (Doxy), which is delivered by pH-responsive stealth liposomal calcium carbonate nanoparticles (Doxy@CaCO-PEG). Compared with the intravenous administration of conventional HER1-CAR-T cells and Tet-HER1-CAR-T cells activated by free Doxy, concurrent intravenous administration of Tet-HER1-CAR-T cells and Doxy@CaCO-PEG leads to the localized tumor activation of Tet-HER1-CAR-T cells and reduced systemic secretion of inflammatory cytokines.
View Article and Find Full Text PDF