Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

An average 9 kilowatt-level direct-DO-cooled side-pumped Nd:YAG multi-disk laser resonator at QCW mode with a pulse width of 250μs is presented, in which the straight-through geometry is adopted the oscillating laser propagates through 40 Nd:YAG thin disks and multiple cooling DO flow layers in the Brewster angle. Much attention has been paid on the design of the gain module, including an analysis of the loss of the laser resonator and the design of the Nd:YAG thin disk. Experimentally, laser output with the highest pulse energy of more than 20 J is obtained at a repetition frequency of 10 Hz. At high repetition frequency, the average output power 9.8 kW with η = 26% and 9.1 kW with η = 21.8% are achieved in the stable resonator and unstable resonator, respectively, and in the corresponding beam quality factor β= 14.7 and β= 9.5 respectively. To the best of our knowledge, this is the first demonstration of a 9 kilowatt-level direct-liquid-cooled Nd:YAG thin disk laser resonator.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.26.013915DOI Listing

Publication Analysis

Top Keywords

laser resonator
12
ndyag thin
12
kilowatt-level direct-liquid-cooled
8
direct-liquid-cooled ndyag
8
thin disk
8
repetition frequency
8
laser
6
ndyag
5
resonator
5
ndyag multi-module
4

Similar Publications

Resonant three-photon ionization spectroscopy has been used to study the late 4d and 5d transition metal carbides RuC, RhC, OsC, IrC, and PtC. These species, like most diatomic transition metals with open nd subshells, exhibit an exceptionally high density of states near the ground separated atom limit. Spin-orbit and nonadiabatic interactions provide a means for the molecules to rapidly dissociate as soon as the bond dissociation energy (BDE) is exceeded.

View Article and Find Full Text PDF

Soliton propagation of laser radiation in various nonlinear media is of great importance because of its numerous applications. Active periodic structures with parity-time symmetry provide the possibility for the solitons generation due to the balance of energy gain and loss. In the present paper, we derive an approximate analytical soliton solution to a model of two-color laser radiation propagation in an active periodic structure.

View Article and Find Full Text PDF

The absorption of laser energy by plasma is of paramount importance for various applications. Collisional and resonant processes are often invoked for this purpose. However, in some contexts (e.

View Article and Find Full Text PDF

We report the design and in-orbit demonstration of a compact optical system for a 87Sr optical lattice clock aboard the Chinese Space Station. This system adopts a compact and robust vertically stacked architecture with a total volume of 0.11 m3 and a mass of 53.

View Article and Find Full Text PDF

Improved rotational characterization of the E3Σ1+(63S1) Rydberg state of CdAr van der Waals diatom: Excitation of single-isotopologue and J-level population distribution.

J Chem Phys

September 2025

Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.

An improved rotational characterization of the E3Σ1+(63S1) Rydberg state of the CdAr diatom produced in a supersonic beam and studied using laser induced fluorescence (LIF) excitation spectra is presented. As an example, the spectra of the E3Σ1+←A3Π0+(53P1) transition, originating from the excitation of a single 116Cd40Ar isotopologue, are recorded and analyzed. In the experiment, the optical-optical double resonance method is employed, utilizing the E3Σ1+(υ')←A3Π0+(53P1)(υ″=6)←X1Σ0+(υ=0) scheme.

View Article and Find Full Text PDF