98%
921
2 minutes
20
Rationale: In lung cancer, upregulation of the PI3K (phosphoinositide 3-kinase) pathway is an early event that contributes to cell proliferation, survival, and tissue invasion. Upregulation of this pathway was recently described as associated with enrichment of the lower airways with bacteria identified as oral commensals.
Objectives: We hypothesize that host-microbe interactions in the lower airways of subjects with lung cancer affect known cancer pathways.
Methods: Airway brushings were collected prospectively from subjects with lung nodules at time of diagnostic bronchoscopy, including 39 subjects with final lung cancer diagnoses and 36 subjects with noncancer diagnoses. In addition, samples from 10 healthy control subjects were included. 16S ribosomal RNA gene amplicon sequencing and paired transcriptome sequencing were performed on all airway samples. In addition, an in vitro model with airway epithelial cells exposed to bacteria/bacterial products was performed.
Measurements And Main Results: The composition of the lower airway transcriptome in the patients with cancer was significantly different from the control subjects, which included up-regulation of ERK (extracellular signal-regulated kinase) and PI3K signaling pathways. The lower airways of patients with lung cancer were enriched for oral taxa (Streptococcus and Veillonella), which was associated with up-regulation of the ERK and PI3K signaling pathways. In vitro exposure of airway epithelial cells to Veillonella, Prevotella, and Streptococcus led to upregulation of these same signaling pathways.
Conclusions: The data presented here show that several transcriptomic signatures previously identified as relevant to lung cancer pathogenesis are associated with enrichment of the lower airway microbiota with oral commensals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221574 | PMC |
http://dx.doi.org/10.1164/rccm.201710-2118OC | DOI Listing |
Ann Surg Oncol
September 2025
Department of Thoracic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
J Cancer Res Clin Oncol
September 2025
Inner Mongolia Medical University Affiliated Hospital, Hohhot, 010030, Inner Mongolia, China.
Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
Objective: CircRNAs are involved in cancer progression. However, their role in immune escape in non-small cell lung cancer (NSCLC) remains poorly understood.
Methods: This study employed RIP-seq for the targeted enrichment of circRNAs, followed by Western blotting and RT-qPCR to confirm their expression.
Nat Genet
September 2025
Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.
View Article and Find Full Text PDFNat Prod Bioprospect
September 2025
College of Pharmaceutical Sciences, Key Laboratory of Medicinal Chemistry and Molecular Diagnostics of Education Ministry of China, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, 071002, People's Republic of China.
Five new heterodimers, chalasoergodimers A-E (1-5), and three known heterodimers (6-8), along with four chaetoglobosin monomers (9-12), were isolated from a marine-derived Chaetomium sp. fungus. The structures of new compounds 1-5 were elucidated by HRESIMS, NMR, chemical calculated C NMR and ECD methods.
View Article and Find Full Text PDF