Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Facile synthesis of rationally designed nanostructured electrode materials with high reversible capacity is highly critical to meet ever-increasing demands for lithium-ion batteries. In this work, we employed defect engineering by incorporating metal organic framework (MOF) templates into one-dimensional nanostructures by simple electrospinning and subsequent calcination. The introduction of Co-based zeolite imidazole frameworks (ZIF-67) resulted in abundant oxygen vacancies, which induce not only more active sites for Li storage but also enhanced electrical conductivity. Moreover, abundant mesoporous sites are formed by the decomposition of ZIF-67, which are present both inside and outside the resultant SnO-CoO nanofibers (NFs). Attributed to the creation of vacancy sites along with the synergistic effects of SnO and CoO, SnO-CoO NFs exhibit an excellent reversible capacity for 300 cycles (1287 mA h g at a current density of 500 mA g) along with superior rate capabilities and improved initial Coulombic efficiency compared with pristine SnO NFs. This is an early report on utilizing MOF structures as the defect formation platform into one-dimensional nanostructures, which is expected to result in superior electrochemical performances required for advanced electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b04968DOI Listing

Publication Analysis

Top Keywords

defect engineering
8
metal organic
8
organic framework
8
templates one-dimensional
8
reversible capacity
8
one-dimensional nanostructures
8
feasible defect
4
engineering employing
4
employing metal
4
framework templates
4

Similar Publications

While hexagonal boron nitride (hBN) hosts promising room-temperature quantum emitters for hybrid quantum photonic circuits, scalable deterministic integration and insufficient brightness alongside low photon collection and coupling efficiencies remain unresolved challenges. We present a femtosecond laser nanoengineering platform that enables the site-specific generation of hBN single-photon source (SPS) arrays. First-principles density functional theory (DFT) calculations and polarization-resolved spectroscopy confirm the atomic origin of emission as interfacial defects at hBN/SiO heterojunctions.

View Article and Find Full Text PDF

YOLOv11-WBD: A wavelet-bidirectional network with dilated perception for robust metal surface defect detection.

PLoS One

September 2025

Department of Smart Manufacturing, Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province, Nanjing Vocational University of Industry Technology, Nanjing, Jiangsu, China.

In the field of quality control, metal surface defect detection is an important yet challenging task. Although YOLO models perform well in most object detection scenarios, metal surface images under operational conditions often exhibit coexisting high-frequency noise components and spectral aliasing background textures, and defect targets typically exhibit characteristics such as small scale, weak contrast, and multi-class coexistence, posing challenges for automatic defect detection systems. To address this, we introduce concepts including wavelet decomposition, cross-attention, and U-shaped dilated convolution into the YOLO framework, proposing the YOLOv11-WBD model to enhance feature representation capability and semantic mining effectiveness.

View Article and Find Full Text PDF

Atomic point defects provide an alternative tuning knob for engineering the properties and functionality of 2D transition metal dichalcogenides (TMDs). Prior to engineering point defects to tailor material properties, identification and investigation of their electronic structure is key to their implementation for device applications. The two most common atomic point defects in monolayer WS are sulfur vacancies and oxygen substituents, which have been thoroughly reported on, but their interaction has yet to be investigated.

View Article and Find Full Text PDF

The ESCRT machinery mediates membrane remodeling in fundamental cellular processes including cytokinesis, endosomal sorting, nuclear envelope reformation, and membrane repair. Membrane constriction and scission is driven by the filament-forming ESCRT-III complex and the AAA-ATPase VPS4. While ESCRT-III-driven membrane scission is generally established, the mechanisms governing the assembly and coordination of its twelve mammalian isoforms in cells remain poorly understood.

View Article and Find Full Text PDF

Microscopic examination of biopsy tissues remains essential for cancer diagnosis, despite advancements in sequencing technologies. Alterations in nuclear size or the nuclear-to-cytoplasmic ratio are hallmark features of cancer cells and often correlate with disease progression. However, the mechanisms underlying nuclear size abnormalities and their impact on tumor progression remain unclear.

View Article and Find Full Text PDF