LncRNAnet: long non-coding RNA identification using deep learning.

Bioinformatics

Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Korea.

Published: November 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Motivation: Long non-coding RNAs (lncRNAs) are important regulatory elements in biological processes. LncRNAs share similar sequence characteristics with messenger RNAs, but they play completely different roles, thus providing novel insights for biological studies. The development of next-generation sequencing has helped in the discovery of lncRNA transcripts. However, the experimental verification of numerous transcriptomes is time consuming and costly. To alleviate these issues, a computational approach is needed to distinguish lncRNAs from the transcriptomes.

Results: We present a deep learning-based approach, lncRNAnet, to identify lncRNAs that incorporates recurrent neural networks for RNA sequence modeling and convolutional neural networks for detecting stop codons to obtain an open reading frame indicator. lncRNAnet performed clearly better than the other tools for sequences of short lengths, on which most lncRNAs are distributed. In addition, lncRNAnet successfully learned features and showed 7.83%, 5.76%, 5.30% and 3.78% improvements over the alternatives on a human test set in terms of specificity, accuracy, F1-score and area under the curve, respectively.

Availability And Implementation: Data and codes are available in http://data.snu.ac.kr/pub/lncRNAnet.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/bty418DOI Listing

Publication Analysis

Top Keywords

long non-coding
8
neural networks
8
lncrnas
5
lncrnanet
4
lncrnanet long
4
non-coding rna
4
rna identification
4
identification deep
4
deep learning
4
learning motivation
4

Similar Publications

Mechanistic roles of long non-coding RNAs in DNA damage response and genome stability.

Mutat Res Rev Mutat Res

September 2025

Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China. Electronic address:

To maintain genomic stability, cells have evolved complex mechanisms collectively known as the DNA damage response (DDR), which includes DNA repair, cell cycle checkpoints, apoptosis, and gene expression regulation. Recent studies have revealed that long non-coding RNAs (lncRNAs) are pivotal regulators of the DDR. Beyond their established roles in recruiting repair proteins and modulating gene expression, emerging evidence highlights two particularly intriguing functions.

View Article and Find Full Text PDF

Expression of long non-coding RNAs MALAT1, MEG3, and XIST in gestational diabetes mellitus: a cross-sectional study.

Acta Diabetol

September 2025

Department of Endocrinology & Metabolism, Medical College & Hospital, Kolkata, 88, College St. College Square, Kolkata, West Bengal, 700073, India.

Background And Aims: Gestational diabetes mellitus (GDM) is defined as glucose intolerance first identified during pregnancy that does not meet the criteria for overt diabetes. Its pathophysiology shares key features with type 2 diabetes mellitus (T2D), including insulin resistance and inflammation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are implicated in T2D.

View Article and Find Full Text PDF

Background: The roles of long non-coding RNAs (lncRNAs) in the progression of various human tumors have been extensively studied. However, their specific mechanisms and therapeutic potential in Triple-Negative Breast Cancer (TNBC) remain to be fully elucidated.

Materials And Methods: The qRT-PCR assay was utilized to assess the relative mRNA levels of TFAP2A-AS1, PHGDH, and miR-6892.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalent chronic disease, characterized by progressive joint degeneration and primarily affects older adults. OA leads to reduced functional abilities, a lower quality of life, and an increased mortality rate. Currently, effective treatment options for OA are lacking.

View Article and Find Full Text PDF

Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives.

Curr Drug Targets

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.

View Article and Find Full Text PDF