98%
921
2 minutes
20
Membrane surface charge is critical for the transient, yet specific recruitment of proteins with polybasic regions to certain organelles. In eukaryotes, the plasma membrane (PM) is the most electronegative compartment of the cell, which specifies its identity. As such, membrane electrostatics is a central parameter in signaling, intracellular trafficking, and polarity. Here, we explore which are the lipids that control membrane electrostatics using plants as a model. We show that phosphatidylinositol-4-phosphate (PI4P), phosphatidic acidic (PA), and phosphatidylserine (PS) are separately required to generate the electrostatic signature of the plant PM. In addition, we reveal the existence of an electrostatic territory that is organized as a gradient along the endocytic pathway and is controlled by PS/PI4P combination. Altogether, we propose that combinatorial lipid composition of the cytosolic leaflet of organelles not only defines the electrostatic territory but also distinguishes different functional compartments within this territory by specifying their varying surface charges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2018.04.011 | DOI Listing |
Ferroptosis, an iron-dependent cell death pathway driven by lipid peroxidation, has emerged as a critical pathophysiological mechanism linking cancer and inflammatory diseases. The seemingly distinct pathologies exhibit shared microenvironmental hallmarks-oxidative stress, immune dysregulation, and metabolic reprogramming-that converge on ferroptosis regulation. This review synthesizes how ferroptosis operates at the intersection of these diseases, acting as both a tumor-suppressive mechanism and a driver of inflammatory tissue damage.
View Article and Find Full Text PDFFront Nutr
August 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin, China.
Hyperlipidemia represents a global metabolic epidemic with increasing prevalence, profoundly associated with the etiology of cardiovascular and cerebrovascular diseases. This study investigates the therapeutic potential of two widely distributed bioactive polyphenols, Cyanidin-3-O-glucoside (C3G), catechin, and their synergistic combinatorial formation (C3G-catechin) in modulating hyperlipidemia, using complementary models (Caco-2 monolayer and Caco-2/HepG2 co-culture systems) to simulate intestinal absorption dynamics and lipid metabolic regulation. Our results reveal that the intestinal absorption efficiency follows the order of catechin > C3G-catechin > C3G, primarily mediated through passive diffusion.
View Article and Find Full Text PDFChem Sci
August 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Knowledge City Manauli-140306 India
Leveraging information entropy to quantitatively measure the organizational diversity and complexity of different chemical systems is a compelling need for next-generation supramolecular and systems chemistry. It can also be a strategy for digitalizing and enabling the bottom-up development of life-like complex systems following probable origin-of-life scenarios. According to the lipid world hypothesis, lipid molecules appear first to facilitate compartmentalization, catalysis, information processing, It is envisaged that fatty acid-based vesicles are more primitive than phospholipid vesicles.
View Article and Find Full Text PDFCell Stem Cell
August 2025
Centre for Oncology and Immunology, Hong Kong Science Park, Pak Shek Kok, Hong Kong SAR, China; Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. Electronic address:
The discrepancy between organoid and immortalized cell line cultures for cancer target discovery remains unclear. Here, our multi-tiered clustered regularly interspaced short palindromic repeats (CRISPR) screens reveal in vivo-relevant metabolic dependencies and synthetic lethal pairs that can be uncovered with tumor organoids but not cell lines or even three-dimensional (3D) spheroids. These screens identify lanosterol synthase and acetyl-coenzyme A (CoA) carboxylase inhibitors as effective treatments that impede xenografted tumor growth in mice.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
The First Clinical Medical School, Heilongjiang University of Chinese Medicine, Harbin, China.
Sepsis remains a life-threatening condition worldwide, causing significant morbidity and mortality across diverse patient populations. Among the various organs adversely affected by sepsis, the lung is particularly vulnerable, often succumbing to acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome (ARDS). Recent basic and translational research has highlighted the importance of multiple regulated cell death (RCD) pathways beyond traditional apoptosis in the pathogenesis of septic lung injury.
View Article and Find Full Text PDF