98%
921
2 minutes
20
Island vegetation plays an important role in biodiversity research across the world. The study of plant diversity in island is helpful for understanding the mechanism of plant diversity maintenance under land-sea interaction. Here, four typical plant communities (Quercus acutissima community, Robinia pseudoacacia community, Pinus thunbergii community and Vitex negundo community) in Miao Archipelago were selected to examine the species, functional and structural diversities and their responses to environmental factors at the community scale by using species diversity indices, functional diversity indices, as well as structural diversity indices. The results showed that the species richness and Rao index of P. thunbergii community was higher than that of Q. acutissima community and R. pseudoacacia community, but the structural diversity was lower. The species diversity and structural diversity of V. Negundo shrub were lower than that of forest community, but the functional diversity was higher than some forest communities. The relationship between the diversity of typical plant communities in island area illustrated a significant positive correlation between species richness with Rao index and tree height diversity, however the correlation with functional evenness was significantly negative. The structural diversity and functional evenness were determined by slope with negative and positive relationships, respectively. Functional heterogeneity, functional divergence and species diversity were affected largely by soil physical and chemical properties, displaying the positive relationship with soil bulk density and soil total carbon content, and a negative relationship with soil water content. In conclusion, diversity pattern of plant community in Miao Archipelago reflected not only the characteristics in mainland vegetation but also the special nature of the sea island.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.201802.037 | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.
Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.
View Article and Find Full Text PDFMater Horiz
September 2025
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, Pavia 27100, Italy.
Machine learning (ML) and deep learning (DL) methodologies have significantly advanced drug discovery and design in several aspects. Additionally, the integration of structure-based data has proven to successfully support and improve the models' predictions. Indeed, we previously demonstrated that combining molecular dynamics (MD)-derived descriptors with ML models allows to effectively classify kinase ligands as allosteric or orthosteric.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstrasse 11a, 07745, Jena, Germany.
Soils harbor some of the most diverse microbiomes on Earth. Interactions within these microbial communities are often mediated by natural products, many functioning as chemical signals. Specialized metabolites known as arginoketides, or arginine-derived polyketides, have been linked to mediate these interactions.
View Article and Find Full Text PDF