Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent superresolution microscopy studies in E. coli demonstrate that the cytoplasm has highly variable local concentrations where macromolecular crowding plays a central role in establishing membrane-less compartmentalization. This spatial inhomogeneity significantly influences molecular transport and association processes central to gene expression. Yet, little is known about how macromolecular crowding influences gene expression bursting-the episodic process where mRNA and proteins are produced in bursts. Here, we simultaneously measured mRNA and protein reporters in cell-free systems, showing that macromolecular crowding decoupled the well-known relationship between fluctuations in the protein population (noise) and mRNA population statistics. Crowded environments led to a 10-fold increase in protein noise even though there were only modest changes in the mRNA population and fluctuations. Instead, cell-like macromolecular crowding created an inhomogeneous spatial distribution of mRNA ("spatial noise") that led to large variability in the protein production burst size. As a result, the mRNA spatial noise created large temporal fluctuations in the protein population. These results highlight the interplay between macromolecular crowding, spatial inhomogeneities, and the resulting dynamics of gene expression, and provide insights into using these organizational principles in both cell-based and cell-free synthetic biology.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.8b00139DOI Listing

Publication Analysis

Top Keywords

macromolecular crowding
24
gene expression
16
fluctuations protein
8
protein population
8
mrna population
8
macromolecular
6
mrna
6
spatial
5
crowding
5
protein
5

Similar Publications

Tumor development is accompanied by strong physico-chemical modifications. Among them, compressive stress can emerge in both the epithelial and stromal compartments. Using a simple two-dimensional compression assay which consisted in placing an agarose weight on top of adherent cells, we studied the impact of compressive stress on cell proliferation and motility in different pancreatic cancer cell lines.

View Article and Find Full Text PDF

Advancing the design and construction of artificial protocells with organized complexity, diverse functionality and practical applicability is urgently demanded in vitro synthetic biology and bioengineering but remains a grand challenge. Here, we present a versatile Pickering emulsion-based encapsulation approach to transform membraneless coacervate compartments into robust multicompartmental hybrid microreactors, which concurrently assimilate the expected attributes of hierarchically compartmentalized structure, molecularly crowded environment, selectively permeable ability and mechanically reinforced stability. Single or multiple biological and non-biological catalytic species can be spatially sequestered in specific domains of the hybrid microreactor, enabling spatiotemporal regulation of individual biocatalysis or divergent cascades with high reaction efficiency.

View Article and Find Full Text PDF

Protein-carbohydrate interactions play crucial roles in important biological processes, including cellular differentiation, cell-cell adhesion, mitogenicity, and microbial and viral infections. Our present understanding in this area is largely due to lectins, a unique class of carbohydrate-binding proteins. In view of their ability to differentiate between normal and tumor cells, as well as their potential applications in cancer diagnosis, prognosis, and therapy, it is important to comprehend how the crowding milieu can modulate the structural features and carbohydrate-binding properties of lectins.

View Article and Find Full Text PDF

Cell-free expression (CFE) systems are emerging as a powerful tool in synthetic biology, with diverse applications from prototyping genetic circuits to serving as a platform for point-of-care biosensors. When multiple genes need to be expressed in the same CFE reaction, their DNA templates (often added as plasmids) are generally assumed to behave independently of each other, with neither affecting the other's expression. However, recent work in CFE systems shows that multiple aspects of these templates can lead to antagonistic or synergistic interactions in expression levels of individual genes, a phenomenon referred to as plasmid crosstalk.

View Article and Find Full Text PDF

A cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume defines the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the fluorescence eXclusion method (FXm) and quantitative phase microscopy (QPM), we investigate CMD dynamics following sudden changes in media osmolarity.

View Article and Find Full Text PDF